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This research investigates a special class of stochastic linear programs 

known as two-stage stochastic linear programming with relatively complete and 

fixed recourse. These models characterize a two-phase process where the first- 

stage decision (itself subject to a separate set of first-stage linear constraints) 

allocates a set of resources to the second-stage linear program prior to the 

realization of random variables affecting second-stage resource availability. Since 

the second-stage decision deterministically follows both first-stage allocation and 

random variable realization, the first-stage variables constitute the only true 

decision. The expected cost of the two-stage recourse problem is also a piecewise 

convex function of the first-stage decision variables, thus allowing a global 

optimal solution that minimizes the total expected cost. 
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This dissertation extends previous efforts on finding this optimal solution 

by introducing new optimization algorithms that take advantage of recurring 

optimal bases in the recourse problem. Additionally, the convergence and 

efficiency of the Geometric Simplex, Projected Gradient, and Parallel Tangents 

optimal search techniques are explored on a set of five capacity expansion 

problems from the literature involving power generation and vehicle basing. 

This research also applies the techniques of experimental design and 

response surface methodology to approximate the expected cost as a quadratic 

polynomial function of the first-stage variables. Using canonical analysis, this 

dissertation provides directions of minimum and maximum response sensitivity to 

deviations in the optimal values of the first-stage variables that were previously 

unavailable. This research demonstrates the practicality of such analysis on 

problems with up to 63 first-stage decision variables and over 1.099-1012 recourse 

scenarios. 

This dissertation also introduces a new type of variance reduction — Latin 

Hypercube sampling — to this class of problems by showing it guarantees a 

reduction in the variance of the estimators of the expected cost, and empirically 

confirming its consistently large variance reduction through comparisons with 

random sampling and control variate results. Finally, this research introduces 

tolerance limits as a non-parametric-based technique for characterizing the 

underlying distribution of the recourse problem. ■' 
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Chapter 1 

Introduction 

1.1 PROBLEM OVERVIEW 

Most practical problems encountered by operations research practitioners 

intrinsically possess some level of uncertainty within their own parameters. 

While stochastic-based modeling techniques inherently accommodate such 

randomness, they typically cannot prescribe an optimal course of action. By 

contrast, well-defined optimization methods can find an optimal solution, but only 

under the simplifying assumption of deterministic parameters (usually expected 

values). Unfortunately, neither modeling paradigm can — by itself — give a 

decision maker the optimal course of action that hedges against extreme 

realizations of the random parameters. 

Long recognizing this deficiency, researchers from both camps have 

attempted to bridge the two by incorporating elements of one within the 

operational framework of the other. For stochastic-oriented methods, this 

migration has occurred primarily under numerical approximation methods, 

typically by applying optimization techniques such as gradient search and 

response surface analysis to a simulation model of the problem. For mathematical 

programming-based algorithms, incorporating stochastic elements has led to 

algorithms involving parameter approximations, scenario representation through 

large-scale models, iterative sampling, and parallel processing. In both cases, the 

computational requirements can be formidable. 

1 



It is in this spirit that this dissertation offers a new approach to analyzing 

the well-defined problem of stochastic programming with recourse. Strictly 

speaking, as a Monte Carlo simulation this research falls in the stochastic-based 

category of modeling techniques. However, the underlying principles that 

motivate the simulation come from linear programming theory; mathematical 

programming literature dominates previous research in recourse optimization 

problems; and, most recourse problems available for comparison purposes have 

been solved using LP-based methods. Consequently, this chapter and the 

following literature review will initially proceed from the mathematical 

programming perspective. 

1.2 PROBLEM DESCRIPTION 

The literature offers a diverse class of problems under the category of 

stochastic linear programming (SLP) based on several properties. 

1. Random Parameter Location. This characteristic of SLP concerns which 

parameters of the model (objective, constraint matrices, or right-side 

vectors) are random variables. 

2. Probabilistic Representation. This aspect of SLP concerns the modeling 

issue of the random variables; i.e., their portrayal either through 

probability distribution functions or by representative scenarios. 

Furthermore, this issue addresses distributional assumptions of type and 



parameter, or in the case of scenario modeling the sampling of a wide 

variety of possible outcomes. 

3. Structural Assumptions. This feature of SLP relates to the number of time 

periods associated with the realization of the random variables; type and 

availability of recourse available to the decision-maker after such 

realizations; chance constraints; and, assumptions on the separability of 

decision variables or scenarios. 

4. Constraint Flexibility. This form of SLP allows for the possibility of 

constraint violation, either through predetermined levels of probability or 

through explicit error vectors to account for infeasibility. 

One category of SLP that was recognized and reviewed early on (Dantzig 1955), 

and has continually reappeared in the literature, is the two-stage problem with 

fixed and complete recourse: 

MIN Z(x) = ex + E[fc(x,G>,T)], s.t. Ax = b, x > 0, (1.1a) 

where 

h(x,(0,T) = MIN dy, s.t. Wy = 0) - Tx, y > 0, (1.1b) 

and co and T contain one or more elements that are random variables with 

prescribed distributions. This form of stochastic programming represents many 

practical problems where the uncertainty lies in resource demand or consumption; 

and, in recent years has been the research focus regarding  advanced 



decomposition algorithms involving Monte Carlo sampling, statistical measures 

of CD and T, and convergence. However, the literature's approach to solving (1.1) 

has exclusively focused on finding MIN Z(X), while little has been reported 

regarding solution sensitivity or the underlying distribution with respect to 

/i(x,co,T). As a practical matter, though, such analysis provides the decision- 

maker with the insight to choose a solution that incorporates subjective 

assessments that are not explicitly modeled. Furthermore, the distributional 

properties of (1.1b) characterize the behavior of the recourse function in a way 

that gives the decision-maker insight beyond the sole criteria of expected value. 

Justification for this line of inquiry begins with the three primary 

characteristics known to be true for (1.1). 

1. Decision Variables. The structure of (1.1) dictates that x represents the 

only true decision vector; once made, the recourse problem (Lib) 

becomes a deterministic function of x and the realization of the random 

variables in T and GO. In a simulation context, this result places x as the 

independent variable and Z(x) as the dependent response. Furthermore, 

preliminary and past research provides empirical evidence that the region 

around the optimal solution x* is often 'flat'; i.e., for some small epsilon 

value e > 0 there exists a considerable range of decision variables x' such 

that Z(x') = Z(x*) + 8 (including multiple optimal solutions; i.e. £ = 0). 

2. Convexity. The literature shows that Z(x) is a piecewise linear convex 

function of x, a property that holds several important ramifications from a 



Simulation perspective. First, such convexity suggests approximating Z(x) 

with a quadratic polynomial formulation of x. Second, a quadratic 

assumption greatly reduces the size of the experimental design used to 

collect the data. Finally, knowing the general shape of the response allows 

for an independent verification of the validity of the polynomial 

approximation using its eigenvalues — a capability generally not available 

in response surface methodology due to the unknown underlying 

functional form. 

3. Distributional Form. Both the literature and preliminary research show 

that the distribution of ä(X,(ö,T) varies with x. Consequently, there may be 

cases where x* is not be the best answer if the distribution of h(x*,ca,T) is 

less favorable in certain aspects (e.g., form, variance, range) relative to 

other parts of the feasible region. 

Therefore, this dissertation proposes expanding the analysis of (1.1) beyond just 

finding the optimal solution by (1) deriving low-order polynomial approximations 

to Z(x) in the region of optimality, and (2) comparing important characteristics of 

the distributions of ä(X,CO,T) for those values of x in the region of optimality. 

This research will focus on a special and important class of (1.1) — the 

capacity expansion problem — and examine its results on a collection of 

problems provided by Morton (1994c) and downloaded through the INTERNET 

(http://www.engin.umich.edu/~dholmes). Table 1.1 gives a description of the size 

of the problem sets denoted as APL1P, PGP2, CEP1, 4TERM, and 20TERM. 



TABLE 1.1 
PROBLEM SET DESCRIPTIONS 

Problem #ofx # of Random #of Rows/Cols in Rows/Cols in 
Set Variables (0/T Scenarios At W 

APL1P 2 5 1280 2/2 5/9 

PGP2 4 3 576 2/4 7/16 

CEP1 4 3 216 9/8 7/15 

4TERM 15 8 256 3/15 28 / 146 

20TERM 63 40 1.095 • 1012 3/63 124/764 
t - Does not include upper bounds on x. 

With the exception of APL1P, Chapter 5 provides the detailed description and 

analysis results of these problems. Chapters 3 and 4 use APL1P as a 

demonstration problem due to its small size. 

1.3 DISSERTATION OUTLINE AND CONTRIBUTIONS 

Current approaches that use sampling techniques to solve (1.1) share the 

same basic philosophy of incorporating such methods within a linear 

programming framework. However, to find the response surface approximations 

of (1.1) this dissertation proposes a different modeling framework by using linear 

programming results within a Monte Carlo simulation environment. Although 

such an approach provides a far richer analysis, it comes at the expense of 

increased computational burdens. Consequently, this shift in modeling paradigm 

requires using a variety of techniques to efficiently solve recourse problems, and 

can be classified in two categories: Optimization and Statistical Analysis. 



Figure 1.1 breaks these two categories into six principal topics and shows 

how they fit in the overall organization of this dissertation. This research 

provides its major contributions within these topics in the following manner. 

1. Search Techniques. This dissertation compares three different optimal 

search routines — Geometric Simplex, Projected Gradient, and Parallel 

Tangents — for accuracy and convergence. The simplex and parallel 

tangent approach have not been tried before in the recourse context, while 

the projected gradient method has been discussed in the general case of 

stochastic quasigradient methods. 

2. Optimization Algorithms. Extending previous research in the areas of 

basis classification, this thesis completely enumerates the optimal bases 

for either the entire feasible region or prescribed subset. This new 

technique offers a faster way to calculate estimates of Z(x), and for smaller 

problems offers an order of magnitude increase in efficiency. 

3. Variance Reduction. The literature reports limited use of variance 

reduction techniques (primarily importance sampling) to improve the 

accuracy, or ease the computational burden, of estimating Z(x). This 

research investigates two techniques — Control Variates and Latin 

Hypercube. 

4. Experimental Design. This topic represents the first known attempt to 

analyze recourse problems using experimental design methods from the 

simulation and engineering literature. 

7 



a o c a £ 
r 3 
*0 ^ 
Q 

<u o 

a << 
<si % 
t-i « a 5? 

^ 
cu as 

>*^a 
«1 
K 

s 
ET 

a 

cu 
cu 
a., Q 
* 

1^ 

a 
t.) o a « w o 

cu 
as 

a 

•fcTC a a •5 eo 

-a 

<>3 

cu a 
•S" a -a o 

%) 
* a 
0 

a. a. 
^ 
+< 
0 
^ 

<U 

-a a 
0 

a a 
■< ^» 
C5 
£ 

^i 

* a u 
a a 
^ 
■»-* 

0 
^ 

<0 

ig» 
tS '-3 0 B- a, S 
3 oo 
• 

CO   co   CO 
3   3  to O  O  O 

'■0 'S 3 CL, c« a 

0       3 «0 - W          co   jo _- 
J3         co -O ^ 
F      <0§ 
•       • 

s 0      'S 

gr
ou

n 

m
po

s 

ig
ra

di
 

^             O            CO 
0      0      s B         «0         3 m    Q    a 
•           •           • 

</> 
"«3-a 
.2-c O 
'S  «a O 

^1 
-§"1 0 .3 

QU H _1 
• • 

CO 

CO >, 
fi 

0 .S3 1 
0 ^ CO 

a *cd 
es   13 

60 

2 
• • 

60 a •a 3 CO s '3 0 0 
0 H" •0 
2 0 2 

Crt U & 
• • • 

CO 
XI 
3 

£H a  u 
O    B 

•S  0. 
B >> u> hJ ffi 

• • 

U 
(A 
PQ m Q 

eoO OOO 
^ : • • • • • • 
• 

■o 
0 

ch
 M

et
h 

m
pl

ex
 

u 
1 1 

c3 00 Ü £ 
1/3   * • • • • 
• 

«4H 

73 
u 

■0 

O 

a 
0 

•O "c3 •a bfi 

tvo 1 Oft! 
• 

1 

BJ 
a 

■a 

> 
'cO fi

ne
 O

p 
gi

on
 

s CO 
00 

CO   CO 
Of* 

• • 

E 
00 0 

11 CO 
JH rt > 
5> ■s •a c 

z Ö O CO 

Q 
H • • 
W 
t/) 

5 
c 
00 a * CO 

OS 

> 
0 

I 
a 
0 •a 
0 
3 

•0 

^«g 
• • 

0 

3 
0 
CO 

'§ & 
SJ 
0 t/j 

uo 
• 

u u e >, eo 
c) 60 

T3 g > 
0 3 & 0 O 

Xfl < u 
• m • 

(L> 
> o 
a o 

<u 
09 
OS 

« as 

I 
o 



5. Response Surface Analysis. This topic employs Canonical Analysis as the 

principal method for quantifying the region of optimality, and directions of 

minimum and maximum sensitivity. 

6. Distributional Analysis. Using non-parametric methods, this research 

introduces this concept to recourse problem analysis by using Tolerance 

Limits to consider high-cost scenarios. 

As shown in Figure 1.1, Chapter 2 reviews the literature on stochastic linear 

programming and simulation optimization, with a special emphasis on solution 

techniques for two-stage recourse problems. Chapter 3 presents the methodology 

and underlying theory employed by the proposed solution algorithms and search 

techniques. Chapter 4 covers the statistical analysis topics and their application in 

the context of (1.1). Chapter 5 reviews the capacity expansion problem sets found 

in the literature and on the INTERNET, and provides a response surface and 

distributional analysis for each problem using the proposed algorithm. Chapter 6 

summarizes the results and contributions of this dissertation, and concludes with 

proposals for future research. 



Chapter 2 

Literature Review 

2.1 INTRODUCTION 

The literature on stochastic optimization can be roughly categorized into 

two broad arenas — stochastic programming and simulation. This dissertation 

proposes solving the two-stage recourse problem traditionally considered within 

the domain of mathematical programming under uncertainty by synthesizing 

results and techniques developed in both camps; accordingly, this chapter reviews 

previous applicable investigations in these areas in the following manner. Section 

2.2 surveys the different modeling variations and assumptions found in the 

literature under the general heading of stochastic linear programming, with 

particular emphasis on the category of interest — two-stage programming with 

recourse. Section 2.3 reviews proposed solution techniques for two-stage 

recourse problems, while Section 2.4 closes the chapter with a summary of the 

simulation optimization literature. 

2.2 STOCHASTIC LINEAR PROGRAMMING 

2.2.1 General Description 

Stochastic linear programming was first explored by Dantzig (1955) as 

mathematical programming under uncertainty, and independently investigated by 

Beale (1955). Since then, the term stochastic programming has come to 

encompass a very broad range of mathematical programming problems where 
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uncertainty exists in one or more of the parameters. Wets distinguishes between 

decision making under uncertainty, where little is known quantitatively about the 

uncertainty, and decision making under risk (or stochastic programming) as 

problems where "...the decision maker is given a description of these unknown 

parameters in terms of a well-defined probability law (Wets 1974)." For the 

purposes of this research, the term stochastic linear programming (SLP) follows 

Kail's (1976) definition as being "...concerned with problems arising when some 

or all coefficients of a linear program are stochastic variables with known (joint) 

probability distribution." 

A generalized version of SLP given by Ermoliev and Wets shows the 

difficulty of solving stochastic programs with recourse: 

find xeXczR" 

suchthat Fi(x)  =   E{fi(x,(o)} 

=   Iftfx, co)P(d(0) < 0, i = 1,..., m 

Z   = F0(x) =   E{fo(x,Q))} 

=   jfo(x, a)P(dto) is minimized (2.1) 

where (QA,P) define the probability space, and for every x in X,fi, fo, and all 

expectations are defined. The simplest approach for solving (2.1) — scenario 

analysis — finds a optimal solution x*(a>') for a given scenario to'; however, 

where there exists at (k = 1,..., s) scenarios to consider, a convex combination 

of x^at) (k = 1, . . . , s) may prove to be infeasible (Ermoliev and Wets 1988). 

Scenario Optimization, as proposed by Dembo (1989), extends this approach to 

linear forms of (2.1) by compensating for such possible infeasibilities by solving 
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(2.1) for each scenario k, then optimizing a tracking or coordination model that 

minimizes some function of the differences in optimality and feasibility; e.g., 

MIN      X pk\\ckx - Vfcll2 + I pfellAfeX - b^ll2 

fc=i k=i 

s.t.     Adx = bd, x>0 (2.2) 

where A^x = bjt characterizes the constraint set for scenario k, Adx = bd represents 

deterministic constraints for all scenarios, and v^ is the optimal objective function 

value for scenario k (Dembo 1989, 1991). However, many problems require non- 

anticipitivity, or here-and-now, decisions, i.e., choices that must be made once- 

and-for-all prior to the realization of (0. In these cases scenario analysis or 

scenario optimization models are inappropriate (Ermoliev and Wets 1988, Morton 

1994b). 

Ermoliev and Wets also contrast the here-and-now environment (which 

requires an anticipative optimization solution) to the situation where the decision 

maker observes CO prior to deciding x. They term this type of model adaptive 

optimization, and in particular introduce the distribution problem as one of 

finding the distribution function of the optimal value of adaptive models. They 

also introduce the two-stage recourse model "...as an attempt to incorporate the 

fundamental mechanisms of anticipation and adaptation within a single 

mathematical model. In other words, this model reflects a trade-off between long- 

term anticipatory strategies and the associated short-term adaptive adjustments 

(Ermoliev and Wets 1988)". 

12 



Because of their dual anticipative/adaptive nature, recourse formulations 

present a robust mechanism for analyzing stochastic programming problems. 

Furthermore, the inherent uncertainty of these problems implies a need for 

estimating the distribution function of the optimal solution, the confidence 

interval of the point estimates of x*(co), and the objective function value. 

Although such estimates are extremely difficult to find (Ermoliev and Wets 

1988), this research proposes a technique for such an undertaking for a special 

case of recourse problems. Specifically, the research focuses on solving this area 

of SLP known as the distribution problem with respect to stochastic linear 

programming problems with relatively complete recourse. The problem set 

contains a specific and important class of recourse problems that model capacity 

expansion. This section reviews the appropriate literature for this class of 

stochastic linear problems and provides the context in which this research is 

conducted. In addition to Ermoliev and Wets (1988), general introductions and 

overviews of the field can be found in Birge and Mulvey (1994), Dempster 

(1980), Hansotia (1980), Kail (1976), Kail and Wallace (1994), and Stancu- 

Minasian and Wets (1976). 

2.2.2 Stochastic Linear Programming with Recourse 

Dantzig (1955) first proposed what the literature now calls stochastic 

linear programming with recourse. In the general recourse case, a first-stage 

decision must be made without knowledge of the values of a subset of the 

problem parameters. A second-stage (recourse) decision follows after making the 
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first-stage decision and realizing the random variable(s). Mathematically, the 

two-stage recourse version of (2.1) can be expressed as 

MIN Z(x) = ex + E[fc(x,co,T)] 

s.txe X,X={x:Ax = b,x>0} (2.3a) 

where 

h(x,(ü,T) = MIN dy 

s.t. Tx + Wy = ©, y > 0; (2.3b) 

x and y are the first- and second-stage decision variable vectors, respectively; c 

and d the respective cost vectors for x and y; A and b the matrix of technological 

coefficients and right-side resource vector, respectively, for the first-stage 

problem; and W and on the recourse matrix and random right-side resource vector, 

respectively, for the second-stage problem. The matrix T (which in certain 

formulations can contain random components) represents the amount of resource 

consumed in the second-stage based upon the first stage decision x, and E is the 

expectation operator. The objective in (2.3a) is to find x* e X such that MIN Z(X) 

= Z(x*). 

There exists numerous variations in the literature on the structure of the 

recourse problem in (2.3) due to differences in the number and type of stochastic 

parameters, distributional assumptions, type of recourse available, and the 

presence of integer decision variables. Walkup and Wets (1967), and Wets (1974) 

provide one set of classifications based on recourse type and availability, and on 

the location of the random parameters. 
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1. Simple Recourse. This type of recourse problem differs from (2.3) in that 

while the decision vector x is still decided prior to the realization of the 

random variables, the formulation assumes a simpler recourse W = [I, -I]. 

2. Fixed Recourse. This term refers to the formulation given in (2.3), where 

the resource vector co and matrix T may be random, but W must be fixed. 

3. Complete Recourse. This condition implies that the second-stage problem 

has a feasible solution for any right-side value. A relaxation of this 

condition — Relatively Complete Recourse — indicates that a feasible 

second-stage solution exists for any feasible first-stage solution x. 

This dissertation restricts its research to the class of problems of the form (2.3) 

that possess relatively complete recourse. 

2.2.3 Chance-Constrained Stochastic Programming 

Although not directly addressed by this research, several important 

variations of SLP should be briefly noted. One such class of models is chance- 

constrained programming first proposed by Charnes and Cooper (1959), which 

views the problem as finding a solution that does not exceed a given probability 

of violating one or more constraints. Mathematically, the chance-constrained 

version of (2.1) can be expressed as 

MIN     ex 
s.t.     PROB{Ax>b}>a 

or     PROB{ A'X>b'} >a'       x> 0 i = 1,...,m    (2.4) 
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where a or a' are the confidence coefficients for the entire constraint set or the 0 

constraint, respectively, and A, and b can be all, or in part, stochastic. Kail (1976) 

shows that chance-constraint and two-stage recourse problems are not always 

equivalent due to the fact that, unlike recourse programs, chance-constrained 

programs are not, in general, convex programming problems. Furthermore, he 

shows that even if the convexity condition exists for (2.4) the computational 

requirements remain formidable. Further information on chance-constraint 

programming can be found in Gartska (1980), Kirby (1970), Prekopa (1970), and 

Vajda(1980). 

2.2.4 Robust Optimization 

Mulvey, Vanderbei, and Zenios (1991) suggest another form of stochastic 

programming that includes an explicit set of error vectors in the recourse 

formulation; i.e., 

h(x,S,T) = MIN      c(y) + p+(z+) +p-(r) 

s.t.        Wy' +       z+ -      z- = S' - Tx        for i = 1,.., s 

y>0. (2.5) 

The error vectors z+ and z" in (2.5) provide recourse in addition to W; however, 

the penalty functions p+(») and p-(«) can be adjusted to insure that z+ and v enter 

the basis only if there does not exist any y such that Wy = S - Tx and y > 0. In 

effect, this extension — called robust optimization — guarantees the condition of 

relatively complete recourse. Their other advancement includes formulating 

higher moments than the expected value in the objective function for discrete 
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versions through the function a(»). By weighting the variance term in (2.5) they 

construct an efficient frontier that describes a robust tradeoff between risk and 

reward (Mulvey Vanderbei, and Zenios 1991). 

2.3 SOLUTION TECHNIQUES FOR SLP WITH RECOURSE 

2.3.1 Approximations and Bounds 

Much of the research since Dantzig (1955) and Beale (1955) 

independently proposed the recourse problem focuses on solution techniques to 

(2.3). Morton provides a concise categorization of these methods into three areas: 

Exact Solution, Approximation and Bounding, and Sampling (Morton 1994a). 

Morton metaphorically compares these approaches to how we solve integration 

problems: (1) first, we would typically try to solve an integration problem 

analytically to get the exact solution; (2) next, for a more difficult integral we 

would attempt a numerical approximation such as Simpson's Rule; and, (3) finally 

by Monte Carlo sampling methods (Morton 1994b). Although exact methods are 

preferred, the literature indicates that such an approach is rarely practical. 

Consequently, approximation and bounding techniques become necessary. 

Unfortunately, for most situations developing an approximation is 

necessary — and difficult. In their introduction to approximation techniques for 

stochastic programming Kail, Ruszczynski, and Frauendorfer (1988) note that the 

difficulty of solving the integral forms in (2.1) directly has lead to approximation 

methods for the vast majority of cases where certainty equivalents or small finite 

distributions do not exist. A review of the literature shows that approximation 

and bounding algorithms dominate the research community's efforts to solve 
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stochastic linear programming, with particular focus on efficient implementations 

of decomposition algorithms, parallel optimization, sampling procedures, 

stopping rules, and bounding. 

Regarding approximation techniques, Kail, Ruszczynski, and Frauendorfer 

note for the general case of (2.1) that all such methods share three fundamental 

issues: (1) first, any approximation approach must correctly substitute w with a 

discrete representation; (2) next, it must develop some measure of its accuracy; 

and, (3) it should provide a way to surpass that accuracy by finding a better 

approximation of the original random vector co. They point out that 

accomplishing the first task requires sampling the probability space to find an 

accurate discretized version of co, a task made difficult for several reasons. First, 

there exists the fundamental problem of not knowing beforehand how much is 

enough; e.g., how detailed a partition of the probability space is necessary. 

Second, the degree of non-linearity influences the degree of partitioning necessary 

for accurate approximation. Finally, the properties offo(x) vary with*, hence, the 

sampling itself depends on x (Kail, Ruszczynski, and Frauendorfer 1988). 

Much of the recent literature on bounding algorithms for the recourse 

problem devotes its efforts to improving the error estimate associated with the 

upper bound. This effort stems from the fact that while calculating the lower 

bound under Jensen's inequality generally requires only a small number of 

evaluations for convergence, the upper bound calculations require evaluating 

ft(x,G),T) at every extreme point of the probability space, which for an m-random 

components in GO and T requires solving /i(x,co,T) 2m times (Birge and Wets 

1989). Additional problems stem from assumptions of independence; however, 
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both the empirical evidence and theoretical results imply that Jensen's inequality 

provides a better estimate of the optimal value of the recourse problem (Gassmann 

and Ziemba 1986). Consequently, the literature offer several extensions of these 

basic approximations. 

Birge (1985) proposes aggregating rows and columns of the original 

recourse problem to reduce the computational complexity. Frauendorfer (1988) 

supplies a straightforward extension of the Edmundson-Madansky upper bound 

inequality to the case of dependent distributions among the elements of co. Birge 

and Wets (1986) provide an extensive catalogue of approximation methods based 

upon linearization of an objective function (called original, subgradients, rays, 

and pairs) and one of several techniques for obtaining discrete probability 

measures (called conditional expectations, extreme points, extremal probability 

measures, and majorizing probability measures), together with guidelines for 

applying them to fixed recourse problems in conjunction with optimization 

solution methods. Gassmann and Ziemba (1986) suggest using linear 

programming on a partition of the probability space that provides a tighter upper 

bound, a technique extended by Edirisinghe and Ziemba (1992) to include 

variable and constraint aggregation, and multi-stage recourse applications. Birge 

and Wallace (1988), using the ray approximation procedure from Birge and Wets 

(1986), develop upper-bound approximations whose computational requirements 

are polynomial in the dimensionality of co (also see Birge and Wets 1989). 

Finally, Birge and Dulä (1991) propose an extension of this sublinear 

approximation to include non-linear recourse problems with first- and second- 

moment information on the elements of co. 
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A related area of interest regarding the upper and lower bounds of the 

recourse problem deals with the value and state of information regarding the 

uncertain parameters. Specifically, the literature addresses two fundamental 

questions in this area: (1) the value of additional information regarding the 

uncertainty in GO; and, (2) the degree of error between a deterministic 

approximation and its more accurate stochastic counterpart. First addressed by 

Madansky (1960) and Avriel and Williams (1970), Birge (1982) offers a summary 

of their work on expected value of perfect information (EVPI) and presents the 

value of the stochastic solution (VSS). Rewriting (2.3), Birge reviews previous 

results showing that for the problem 

<|)(X,G>,T) = ex + MiN[dy I Tx + Wy = co, y > 0] 

s.t.xe X,X={x:Ax = b,x>0}, (2.6) 

where the expected value for the wait-and-see solution (WS) is 

WS = E[MIN <t>(x,a>,T)], x e X, (2.7) 

the expected value for the recourse problem (RP) is 

RP = MIN [E <KX,CD,T)], x e X. (2.8) 

The expected value approximation (EV) is defined as 

EV = MIN (j)(x,E[co],E[T]), x e X, (2.9) 

and where x is the optimal solution to (2.9), the expected result of using x is 
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EEV = E[<Kx,co,T)], x e X. (2.10) 

Consequently, the following bounds 

EEV>RP>WS>EV (2.11) 

hold due to the convexity of (|>(x,a),T) and Jensen's inequality. From (2.11) Birge 

shows that 

EVPI = RP - WS 

EEV - EV > EVPI > 0 (2.12) 

and from Avriel and Williams (1970) repeats the suggestion that (2.12) provides a 

bound on the value of more information regarding co and T. Birge then suggests 

another measure — the value of the stochastic solution (VSS) — defined as 

VSS = EEV - RP 

EEV-EV>VSS>0 (2.13) 

to establish the worth and value bounds for solving more complicated recourse 

models (Birge 1982). Additional research on information costs includes CO and T 

with discrete distributions (Baron 1971), lower bounds for EVPI (Morris and 

Thompson 1980), and bounds for linear and concave preference functions 

(Hausch and Ziemba 1983). 
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2.3.2 Exact Solution Methods 

According to Morton's classification, exact solution methods "...include 

simplex-based algorithms that exploit special structure of bases...decomposition 

or L-shaped schemes...interior point methods...and the Progressive Hedging 

algorithm...(Morton 94a)." To understand how and why these solution methods 

can be applied to (2.3), its general characteristics (such as convexity) need to be 

determined. Wets (1966a) accomplished this characterization by showing that 

(2.3a) is convex and continuous for that subset of solutions x e X when (2.3a) is 

feasible for all realizations of co and T. Furthermore, he shows that the expected 

value of 7c(co - Tx) can be used to construct a supporting hyperplane to (2.3a) 

(Wets 1966a). These important results theoretically clear the way for solving 

(2.3a) with variants of the major decomposition algorithms and show that a local 

minima for (2.3a) is also a global minima. (In a related paper Wets (1966b) also 

shows that the solution set to (2.3a) is both convex and polyhedral.) 

Dantzig and Madansky (1960) first proposed applying the Dantzig-Wolfe 

decomposition algorithm to the dual of a special case of (2.3) 

+ P2<l2y2+ ... +Psdsys 

=    b 

=    CO! 

+ W2V2 =    C02 

Tsx +Wsys    =   cos 

x>0;y,>0,i=l,...,5 (2.14) 
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where there exists a finite number of oo, (i = 1, 2,..., s) with known probability 

PJ. Wets (1966a) proposes a modification to the dual of (2.14) whereby the 

normal dual variables TC,- are replaced with %t = (l/p,-)-7i;,\ The subsequent dual set 

of inequalities corresponding to the column vectors associated with x in the 

primal then form the master problem in the dual, while the set of constraints 

corresponding to decision variable y,- in (2.14) create subproblem i in the dual. 

Wets also discusses another version of (2.14) whereby subtracting the k& row T% 

+ W*y* = GO* from the K+1& row Tk+1x + Wk+1yk+\ = (ak+1 generates a staircase 

system with the same constraints as in the recourse section (2.14) (except for T!x 

+ W!yi = co1), thus providing a simpler form for computation (Wets 1966a). 

(Also see Wets (1974,1988) for a more recent summary of his results.) 

In 1969, Van Slyke and Wets developed the L-shaped algorithm based on 

the immediate result of Wets (1966b) proof that if "...the set of feasible decisions, 

represented by an n- vector x, is a convex polyhedral subset of Rn.. .at most a finite 

number of linear constraints must be added to the problem (2.3a) to determine the 

set of feasible decisions (Van Slyke and Wets 1969)." For such a finite case their 

algorithm iteratively adds two types of constraints to (2.3a) — both in terms of x 

— that: (1) reduce the region of (2.3a) as necessary to guarantee feasibility for 

(2.3b) (feasibility cuts); and, (2) produce an optimal solution to (2.3a) through the 

dual variables found in solving the recourse problem (2.3b) (optimality cuts). 

Unfortunately, Van Slyke and Wets point out that for the continuous case of co 

(including T), developing the second set of constraints requires knowing the 

entire description of its probability space, and can easily lead to an infinite 
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number of simplex multiplier-based constraints. Furthermore, they note that even 

problems with finite distributions of CO may have a tremendously large set of 

values, thus posing practical computational problems. Finally, they suggest 

investigating approximation schemes, although such methods may eliminate the 

optimal solution through sampling error (Van Slyke and Wets 1969). (Wets 

(1972) also provides characterization theorems and algorithms to test whether a 

recourse problem is feasible, bounded, and solvable prior to solving it.) 

Garstka and Rutenberg (1973) present one of the first enhancements to the 

L-shaped algorithm by developing a more efficient method of calculating the dual 

variables of the recourse problem associated with the optimality cuts. Taking 

advantage of the lattice structure of a finite distribution of CO, they perform a 

parametric ranging of all combinations of the elements (lattice points) in co 

regarding their feasibility for a given optimal basis. They justify this approach by 

noting that the information provides a probability estimate for each realization of 

co that in turn helps calculate the dual variables in the L-shaped algorithm. 

Garstka and Rutenberg then incorporate this idea in a basis generation procedure 

that removes a vector from the current optimal basis and replaces it under the dual 

simplex procedure. At each optimal basis their algorithm systematically classifies 

the lattice points according to their feasibility using the above parametric ranging 

procedure. Garstka and Rutenberg show their sifting algorithm to be more 

efficient than earlier techniques that sequentially try all lattice points against an 

optimal basis, then find another optimal basis from which to try those lattice 

points that were infeasible under the previous basis, and so on until all realizations 

of co are allied with an optimal basis (Garstka and Rutenberg 1973). While this 
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method can provide faster execution of the L-shaped algorithm, it can also 

iteratively supply finer discrete approximations for continuous cases of co (Wets 

1983). Also Wets (1988) points out that bunching procedures may be more 

appropriate for cases where co cannot be represented in a lattice structure, contains 

dependent random variables, or derives from an approximation design. 

Both approaches share the assumption that a relatively small number of 

optimal bases exist for the recourse problem (2.3b) for all realizations of co - Tx. 

Garstka and Rutenberg (1973) claim that even with a large number of lattice 

points "...the [recourse] subproblems are very similar indeed, differing only by 

some minor change to an element in p' [the random right-side vector]. It seems 

likely that a great many of the.. .optimal bases.. .will be the same.. .so there is the 

combinatorial problem of spotting them in some systematic manner..." Similarly, 

Wets (1983) notes that "...because of the nature of the problem at hand it is 

reasonable to expect that only a small number of bases in W (W in (2.3b)) will 

suffice to bunch all the realizations." Furthermore, in related areas of stochastic 

programming such as the distribution problem, some numerical algorithms 

implicitly make the same assumption by parametrically decomposing the sample 

space of CO into decision regions (optimal bases) for later use with updated 

probability distributions (Bereanu 1980). One option this dissertation proposes 

for solving and characterizing the recourse function incorporates this assumption 

of a few optimal bases in the recourse problem. Chapter 3 explains in detail how 

the proposed Monte Carlo simulation framework implements this approach for 

solving recourse problems. 
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Kail (1979) proposes a basis factorization technique (see Strazicky 1974) 

for exact solution methods by taking advantage of the block structure of the dual 

of (2.14). He suggests representing the dual basis B of any feasible solution to 

(2.14) in the form 

/T   Y \ 
B = (LZ) (2'15) 

where submatrix T is regular and invertable. Kail shows how all iterations of the 

simplex can maintain the form of (2.15) with submatrix T; and, through a 

reformulation of the dual of (2.14) constructs a block-diagonal form for T as well. 

Where A is mxn, W is MXV, r the number of scenarios or realizations of co in 

(2.14), Kail (1979) shows the number of operations per simplex iteration on (2.15) 

for the factorization method to be on order 0(r), where standard pivots on (2.15) 

are on order 0([r(\ - u) + n]2). However, Birge (1988) shows that this dual basis 

factorization requires the same computational effort as the L-shaped method. 

Birge and Louveaux (1988) propose an extension of the L-shaped method 

that provides (under certain conditions) faster convergence to an optimal solution 

than Van Slyke and Wets' original algorithm. Their algorithm recognizes that in 

inner linearization (column formation) decomposition algorithms the rate of 

optimal solution convergence may increase with multiple — as opposed to single 

— column generation proposed by Birge (1985). Although the L-shaped method 

performs an outer linearization (row generation) of (2.3a) through the dual 

variables of the recourse problem, Birge and Louveaux hypothesize that the same 

phenomenon can occur in such outer linearization methods. Consequently, their 
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extension generates multiple optimality cuts at the same iterative point where Van 

Slyke and Wets' algorithm generates one. Furthermore, Birge and Louveaux 

establish an upper bound on the number of iterations for the two versions based 

on the maximum number of finite convex sets of the recourse polyhedron (b), the 

number of constraints in the recourse problem (rri2), and the number of 

realizations of a> (K). These bounds — 1+ Kib™2 -1] for their multi-cut method 

versus (1 + K[b - l])m2 for the L-shaped algorithm — shows how the multi-cut 

method could have an advantage for large m,2 (Birge and Louveaux 1988). 

According to Helgason and Wallace (1991) the L-shaped method 

dominated most computational research in stochastic programming until Wets 

(1989) and Rockafeller and Wets (1991) proposed another decomposition method 

called scenario aggregation. As explained by Wets (1989), scenario aggregation 

differs from the earlier decomposition algorithms by its underlying assumption 

that the random elements of the problem cannot be accurately described by a 

probability distribution. Instead of solving the problem through discrete 

approximations based on distributional assumptions, Wets describes this lack of 

information leading to scenario analysis; i.e., characterizing the randomness 

through a relatively few scenarios. Specifically, Wets proposes an algorithm that 

finds a solution x* to the problem 

MIN Zpsf(x,sN) 

s.t. xe nsCs (2.16) 

where N = {s1,. . . ,sL} represents the set of scenarios s' and ps is the probability 

weight, Cs the set of solutions, and f(x,s') is the objective function for scenario sl, 
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respectively. Letting xvs represent the optimal solution to the individual scenario 

MIN f"(x,s) s.t. x e Cs at iteration v, Wets progressively updates xvs with an 

average solution xv = 2jpJx
VJ and 

f(x,s) =f(x,s) + wv-J(s)x + \ plx - l^P (2.17) 

where 

wv(s) = wv-](s}¥ plx™ - xv\. (2.18) 

Defining an implementable solution as one where x is scenario independent and 

an admissible solution to be one where x is feasible for all Cs, he shows that an 

optimal solution to (2.16) meets both conditions when xvs = xv for all s e N. Wets 

also argues that unlike a simple averaging of the optimal solutions xs to the 

individual scenario problems f(x,s), a solution to (2.16) allows for the costs that 

occur for choosing a given x and realizing scenario s (Wets 1989). Although not 

directly related to this dissertation's area of research (two-stage problem with 

recourse), it should be noted that Wets (1989) and Rockafeller and Wets (1991) 

extend the scenario aggregation policy to multiple periods by modifying the 

method to calculate a solution set conditioned upon known or observable 

information about the problem in each period. This scenario aggregation 

technique that produces an implementable and admissible solution under such 

non-anticipitivity conditions for multi-period problems is known as the 

progressive hedging algorithm (Wets 1989, Rockafeller and Wets 1991). Recent 

applications  of the  progressive  hedging  algorithm include Lagrangian 
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approximations of the individual scenarios (Helgason and Wallace 1991) and 

stochastic network programming (Mulvey and Vladimirou 1991,1992). 

2.3.3 Sampling Methods 

The previous sections discussed solution techniques for (1) cases where 

realizations of the random vector CO are exact, known, and of manageable size; 

and, (2) approximation methods such as aggregation or partitioning for 

distributions of CO that are either continuous, possess large discrete realizations, or 

are only partially known. The literature offers another approach using sampling 

techniques under two basic contexts — decomposition and stochastic 

quasigradient (SQG) algorithms. In general, both aggregation and stochastic 

decomposition involve algorithms that work with only a small fraction of the 

overall sample space, thus implying a need to determine solution quality (Higle 

and Sen 1993). Although the SQG approach primarily employs gradient search 

techniques, it too only has a small exposure to the sample space that causes 

problems in estimating the solution quality. The literature on SQG methods is 

covered in Section 2.3.4. 

Higle and Sen (1991b) propose a variant of the decomposition approach 

for two-stage recourse problems based on sampling the random vector co of 

subproblem (2.3b). For a given feasible solution x* to (2.3a), Higle and Sen 

observe that the dual of (2.3b) is 

h(xk,G>) =   MAX   #(co-Tx*) 
s.t.      rc*W<d re* unrestricted (2.19) 
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and where they define V as the set of all vertices for the dual, V* as the set of dual 

vertices {n1 ,K2,... ,nk}, and CO* an independent sample of CO for t = 1,..., k, then 

MAX{7U(CO' - Tx*) I % e V*} < MAX{7U(CO' - Txk) I n e V}        (2.20) 

and 

rc*,(co' - Tx*) < h(x*0). (2.21) 

Higle and Sen also define a piecewise linear approximation of (2.3b) after k 

iterations as 

M%) = MAX {a*, + (ß*, + c)x \t = 1,.. .,*} (2.22) 

which in turn forms the master program 

Mmf£x), s.t.Ax = b, x>0 (2.23) 

Based on the results of (2.20-21), their algorithm at the k& step receives an 

optimal solution x* from (2.23) (based upon k-\ previous cuts) and generates a 

new cut k of the form 

1  k 

akk + ($kk + c)x s ex + T I n*t(& - Tx) (2.24) 
K t=\ 

for inclusion in (2.22) at the k+l iteration. Additionally, they update the previous 

cuts using the formula 

a*,=^ccH,  ß*,=xß*"7"  t=l,..,k-l (2.25) 
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in order to provide all generated cuts with current sampling information. Higle 

and Sen (1991b) essentially build an approximate outer linearization of (2.3a) 

using cuts generated by (2.24) and independent samplings of CO and T; in this 

fashion, they avoid any requirement for finite realizations of CO and T (or 

equivalent discrete approximations) and any distributional assumptions on their 

random components. 

Higle and Sen (1991b) also address the convergence issue their algorithm 

poses due to the randomized nature of the cuts generated in (2.24) and (2.25) by 

proposing a modification to their basic algorithm using an incumbent solution xk-J 

at the iß iteration. Designating this algorithm stochastic decomposition, they use 

the incumbent solutions xk-J and Tt^1 to update all previous cuts (2.25) with the 

current realization co', then substitute the incumbent solution xk-J with x* if the 

condition 

Mxk) - *(**-') < r-tfk.tix*) -fk.iix^)}, (2.26) 

where r is fixed on the interval [0,1], is met. Higle and Sen also show that at least 

one of the test statistics 

i   k 1   mk 

f = ilfi&) or f^^rYfkn^), (2.27) 
K i=1 «Ik i=l 

where m^ represents the number of incumbent solutions detected by iteration k, 

converges to the optimal solution value, thus suggesting a stopping criteria of the 

form 
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]M£atÜ<e or M5±^<e> (2.28) 

respectively. They also suggest comparing the cardinality of the sets of vertices 

V* and Vk+1 to the dual (2.19) as a method to prevent premature termination 

(Higle and Sen 1991b). 

In a separate article, Higle and Sen (1991a) offer additional termination 

criteria to the stochastic decomposition algorithm based upon the empirical results 

of their algorithm arriving at an optimal solution prior to solution stability as 

represented in (2.28). They propose alternative termination methods by either 

resampling the observations on CO (using Lagrangian duality and Kuhn-Tucker 

conditions) or resampling the dual vertices of (2.19) (Kuhn-Tucker alone). Their 

results from an example power expansion program found that the stopping point 

for the three proposed statistical verifications of optimality occurred at fewer 

iterations than the original objective function stability measure (2.28). Finally, 

Sen, Mai, and Higle (1994) provide a summary of the stochastic decomposition 

algorithm within the framework of a randomized versions of Kelly's (1960) 

cutting plane methods and Benders' (1962) decomposition of two-stage linear 

programs. 

Dantzig and Glynn (1990) propose a method that combines Benders' 

decomposition, Monte Carlo sampling, and parallel processing to solve multi- 

period problems. Their idea places the master problem under the control of a 

single processor that iteratively provides updated solutions x to several parallel 

computers responsible for solving the dual subproblems for sample realizations of 
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co. The subprocessors in turn update the master program with cuts used to 

develop a new estimate of x. They terminate the algorithm when the difference 

between the upper bound for MIN Z(x) and the lower bound (cuts from the 

subproblems) reaches a pre-specified interval. For continuous or large finite cases 

of oo, Dantzig and Glynn suggest a Monte Carlo sampling procedure for the 

subproblem; and, to improve both the convergence (through variance reduction) 

and robustness of the algorithm they incorporate importance sampling of the 

scenarios (Dantzig and Glynn 1990. Also see Dantzig and Infanger 1991). Sen, 

Mai, and Higle's (1994) comparison of Dantzig and Glynn's approach to 

stochastic decomposition notes that the former suffers from: (1) using a fixed, 

independent samplings that detract from calculating the error bounds; and (2) 

solving one subproblem for each sample CD at each iteration versus no more than 2 

subproblems per iteration for the stochastic decomposition method. 

Berger, Mulvey, and Ruszczynski (1993) propose another method for 

solving scenario-based models based upon the idea of dualizing the non- 

anticipitivity constraints (i.e., the first-stage decision variables x in (2.14)) to 

produce separable programming problems for each scenario. For example, (2.14) 

can be reformulated to read 

/IIN    cxi+ pidiyi +...+ cx5+ psd5y5 

s.t.                Axi =     b 

Tixi+Wiyi =    COi 

Axs =     b 

Tsxs+ W5y <? =   co5   (2.29a) 
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Xl-X2 
=     0 

*s-i -*s =     ° 

x,- > 0; y,- > 0. (2.29b) 

Redefining the notation of (2.29) to where 

A,- = (
A 0   > 

b« = f 
b  1 

[T wj [coj 
c f *i  \ 

y« j 
(2.30) 

they let N,- be the fo period where element (j,k) of iV equals 1 if and only if y = k 

and the fib component of N shares the same history through period /+1. Under 

these conditions, a general multi-period recourse formulation (where the two- 

stage recourse problem is a special case) can be written as 

/IlN 
S 
I CiX,- 
i-1 

(2.31a) 

S.t. AiXt    =   bj i=l,.. .,n (2.31b) 

N,-x,- - N,x,+7   =    0 i=l,. .., n - 1 (2.31c) 

x,>0 /=!,.. .,«. (2.3 Id) 

Berger, Mulvey, and Ruszczynski then dualize constraint (2.31b) by dropping 

(2.31c) and replacing (2.31a) with 

s s s 
I ciX; + I miNiXi - N,-x,-+i) + \ r I UN« - NA+i)ll

2. (2.32) 
i=7 i=7 i=7 
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They propose an approximation method for solving the non-separable quadratic 

form of (2.32) using a nonlinear interior point method whereby the approximate 

solution x and the multipliers rc,- are updated every 2-4 and 100-150 iterations, 

respectively (Berger, Mulvey, and Ruszczynski 1993). Berger and Mulvey (1993) 

propose an improvement of this algorithm with a restart strategy that addresses 

the instability of interior point codes after updating x. 

2.3.4 Subgradient Methods 

Sampling methods for recourse problems using probability distributions to 

model the random parameters are found in the literature in two basic categories: 

(1) the sampling-based algorithms applied in a decomposition context (such as 

Higle and Sen's stochastic decomposition algorithm) just reviewed; and (2) 

stochastic quasigradient (SQG) algorithms (Morton 1994a). The SQG method 

attempts to find the solution to the recourse problem by extending the classic 

steepest descent (or gradient search) method found in non-linear programming to 

the stochastic programming environment. As explained by Luenberger (1989), in 

a deterministic setting we wish to find 

x*+1 = xk-aWf(xk) (2.33) 

where V/(x*) is the gradient of the function/(x) defined as 

Y/(x*) 
3xi    3x2 3XM 

(2.34) 
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and a* is a scalar that minimizes f(xk - akVf(\k)). If x e X constrains (2.33), then 

a projection gradient method determines the descent direction by projecting the 

gradient onto the working surface to maintain feasibility (Luenberger 1989). As 

Law and Kelton (1991) point out, (2.34) obviously cannot be directly applied in 

the stochastic environment due to random variation of f(x); hence, a gradient 

estimation technique (such as replication or perturbation analysis) must be 

employed. SQG algorithms extend these stochastic approximation algorithms to 

stochastic programming problems (Ermoliev 1983). 

Defining F(x) = E(o[/(x,a))] as the expected value of the objective function, 

Gaivoronski (1988) provides a general extension of (2.33) for the stochastic 

programming problem as 

xk+1 = rcjx* - a¥], k = 0,1,... 

E[v* I x0, x1,... ,xk] = Fx(x*) + bk (2.35) 

where nx is the projection operator, xk is the incumbent solution approximation, 

ak is the step size, and vk (as a statistical estimate of the subgradient of F(x)) is the 

stochastic quasigradient of F(x). In general, he notes that the quasigradient vk can 

be estimated as 

v* = ilV/(x*,coO (2.36) 
iy i=i 

using Monte Carlo sampling (with asymptotic error 1/VÄÖ, or where distributional 

information on GO is available he suggests potential asymptotic error rates 

approaching log(N)/N.   He also observes that SQG methods do not exhibit 
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monotonicity due to the random nature of (2.36), thus contributing to problems in 

determining optimality (i.e., \\xk+1 - xk\\ < e), calculating step size a*, and 

estimating step direction v*. Finally, Gaivoronski reviews several alternatives to 

(2.36) such as random search analogs, finite difference approximations 

yk = ff/(xfc+8*gjM)-,/(xfc+cofc) 

hi 8* 

or central finite differences 

where e,' is the unit vector and 8fc is a scalar; or, in the case where F(x) is not 

differentiable he suggests objective function smoothing, or averaging using 

Vk+1 = h    Ev* (2.39) 
M i=k-M+l 

where M is memory size (Gaivoronski 1988). In the case of the recourse function 

JErmoliev (1983,1988) shows that for a single sample 00s 

v* = c + |i(x*,a>S)T (2.40) 

where u,(x*,£5) are the dual variables for the recourse problem. 

Recent research addresses the major drawbacks of SQG techniques; i.e., 

slow convergence, oscillation in the neighborhood of the optimal solution 

(stopping times), projection on X, and selecting the appropriate stepsize. 
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Ruszczynski and Syski (1986) propose an auxiliary filter that provides aggregate 

stochastic subgradients at each iteration. Pflug (1988) reviews both of these 

problems in the context of deterministic, adaptive, ratio-of-progress, oscillation, 

and inner product tests, as well as providing comparison and implementation 

comments. Urasiev (1988) discusses an adaptive procedure using quasigradient 

directional information to calculate subsequent stepsizes, while Marti (1988) 

proposes a semi-stochastic approximation that under certain cases can partially 

restore monotonicity to the objective function. Rockafeller and Wets (1988) give 

a method for gradient projection on X that, under certain conditions, does not 

require penalization or primal-dual workarounds. In addition to Gaivoronski 

(1988), Ermoliev (1988), and Ermoliev and Nurminisky (1980) provide general 

introductions to SQG methods. 

2.4 SIMULATION AND SLP WITH RECOURSE 

Referring to Figure 1.1, the previous sections of this chapter summarize an 

extensive amount of research in the categories of Search Techniques and 

Optimization Algorithms. In all cases the research objective attempts to provide a 

better method for finding the optimal solution, and in many cases does so by 

improving the statistical estimation of the stochastic effects within a mathematical 

programming framework. However, an extensive review of the literature found 

no attempts to model stochastic two-stage linear programming programs with 

fixed and complete recourse from a simulation perspective. Consequently, very 

little has been accomplished in investigating the remaining four categories of 

Variance Reduction, Experimental Design, Response Surface Analysis, and 
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Distributional Analysis since these topics naturally arise in a simulation 

environment. (The efforts by Dantzig and Glynn (1990), Danztig and Infanger 

(1991), and Infanger (1994) in applying Importance Sampling to stochastic 

programming provide one exception in the open literature for using variance 

reduction methods.) This absence of research thus provides this dissertation with 

its principal focus and contributions, and constitutes the subject matter of 

Chapters 4 and Chapter 5. Therefore, this section will offer only a general 

overview of simulation optimization, and will defer the application of these 

techniques in the SLP context to the following chapters. 

Azadivar (1992) provides a brief overview of the four major approaches to 

using simulation as an optimization tool. 

1. Gradient-Based Search Methods derive from traditional non-linear 

programming; the most-often used methods include finite difference 

estimation, infinitesimal perturbation analysis, frequency domain analysis, 

and likelihood ratio estimators. 

2. Stochastic Approximation Methods apply recursive search techniques that 

converge on the theoretical minimum or maximum. 

3. Response Surface Methodology fits a low-order polynomial approximation 

to the responses of the simulation, usually derived from a formal 

experimental design. 

4. Heuristic Methods fall into two broad categories — complex search and 

simulated annealing (Azadivar 1992). 
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Within this construct the algorithms described in Chapter 3 incorporate items (1) 

and (2) by employing a recursive search technique referred to as the Nelder-Mead 

simplex method (Neider and Mead 1965), and the projected gradient and 

PART AN search methods discussed in Luenberger (1984). Chapter 4 develops 

the techniques for fitting and analyzing a response surface to Z(x) in (2.3a) for a 

given solution x, while item (4) is not used in this thesis. 

Simulation does have some disadvantages and pitfalls. Summarizing Law 

and Kelton (1991), these problems include: 

1. Expense. Simulation models of complex systems can be costly and time- 

consuming to develop and run. 

2. Stochastic Nature. Although inherently stochastic, simulation models 

perform better when comparing alternative solutions rather than finding 

the optimal one. 

3. Bad Assumptions. While false assumptions can derail any modeling 

effort, simulation is especially vulnerable to mistaken probability 

distributions, false presumptions of independence, inaccurate 

identification of randomness, biased random number generation, and an 

insufficient number of replications. 

4. Resolution. Getting the right level of detail is important — and difficult. 

If there is too little detail, then the model lacks validity; too much, and it 

introduces extraneous noise to the response, becomes expensive to code, 

and time-consuming to run (Law and Kelton 1991). 
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The process of calculating the response surfaces associated with (2.3a) is perhaps 

most susceptible to the drawbacks of expense and bad assumptions. Clearly, using 

a repetitive search will be computationally more expensive than current methods; 

however, this dissertation contends (and the research will show) that the 

additional information justifies the effort. As a simulation, the proposed 

methodology is also vulnerable to bad assumptions, although this drawback 

applies to the most recent LP-oriented approaches (e.g., stochastic decomposition) 

as well. The research assumes that the probability distributions for the test 

problems in Chapter 5 are correct, and will address the issues of bias (through 

either random number generation or other sources) and insufficient replications at 

the appropriate point. 

Additional information and details on simulation optimization techniques 

can be found in Barton and Ivey (1991), Biles and Swain (1979), Box and Draper 

(1987), Fu (1994), Jacobson and Schruben (1989), Kleijnen (1974, 1987), Law 

and Kelton (1991), Meketon (1987), Pritsker (1986), Rubinstein (1981), and 

Safizadeh (1990). 
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Chapter 3 

Methodology: Optimization 

3.1 INTRODUCTION 

3.1.1 Overview 

This chapter describes the optimization methodology for deriving the 

response surface approximation of the expected optimal value of the objective 

function associated with a class of two-stage stochastic linear programming 

problems with relatively complete and fixed recourse. The following sections of 

this introduction review the notational form, principal terms, and major 

definitions for the remainder of the dissertation; provide an exact description of 

the class of recourse problems investigated by this research; and, present a sample 

recourse problem used throughout Chapters 3 and 4 to illustrate the particular 

techniques. After this introduction, Sections 3.2 and 3.3 present, respectively, two 

major areas regarding optimality and algorithmic efficiency investigated by this 

research: Non-Linear Search Techniques and Linear Programming Algorithms. 

The next chapter covers the statistical analysis topics of Variance Reduction, 

Experimental Design, Canonical Analysis, and Distribution Analysis. Although 

this chapter focuses on the computational aspects of deriving a response surface 

approximation of the expected value of a two-stage LP with recourse, when 

appropriate it also provides the theoretical background, literature references, and 

the author's own contributions for the area under study. 
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3.1.2 Model Description and Basic Definitions 

For notational purposes matrices are shown in uppercase boldface with the 

subscript identifying the specific matrix (vectors appear in lowercase boldface). 

Where a matrix is identified in boldface type, the superscripts label column or row 

vectors; conversely, where an element of a matrix appears in non-boldface type 

the superscripts describe the location of the element in the matrix. Any additional 

subscripts appearing in parenthesis refer to that matrix as defined for the equation 

in the subscripted parenthesis. If no subscripted item in parenthesis appears, then 

assume the matrix or element in the context of its most recent definition. The 

superscript "*" identifies that matrix as associated with an optimal solution for an 

optimization problem. Subscripting conventions also apply to functional notation. 

Example. G**;(2) refers to the k& row in the i& version of matrix G as that 

matrix is defined in the set of equations (2). 

Example. Gy refers to the element in the i& row andj^ column of matrix 

G as most recently defined. 

This dissertation restricts its research to a specific, but important, category 

of two-stage programming under uncertainty with relatively complete and fixed 

recourse — the capacity expansion problem. In general, the capacity expansion 

problem involves optimization through a first-stage decision (x) regarding the 

amount of production capacity to add, with a follow-up second-stage vector (y) 

typically deciding the optimal resource allocation after the realization of any 

random variables.   Examples of this sort of problem from the literature and 
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INTERNET include power expansion, machine capacity expansion, and facility 

location problems; and, almost always contains uncertainty in one or more 

resource's availability or requirement (i.e., demand, budget, physical limitations). 

Although the second-stage production problem possesses an infinite horizon (i.e., 

periodic and recurring), most models assume (with appropriate present-value 

adjustments in the objective function coefficients) that a simplifying single 

second-stage model captures the essential behavior of a more complicated multi- 

stage expression of the recourse problem. Also, expansion problems can involve 

a sequence of capacity decisions over time, but this research restricts its focus to a 

one-time expansion decision formulated in the first-stage. 

Mathematically, the two-stage capacity expansion problem examined by 

this research is expressed as MIN Z(X) where 

Z(x) = ex + E[/i(x,co,T)], s.t.Ax = b, x>0 (3.1a) 

/i(x,co,T) = MIN dy, s.t. Wy = co - Tx, y > 0 (3.1b) 

c and d are cost coefficient vectors for a unit increase in x and the recourse 

decision y, respectively; A is the matrix of per unit consumption of resource b by 

x; W is the matrix of per unit consumption of resource co as adjusted by the vector 

Tx; and function /i(x,co,T) is defined as the recourse problem (3.1b). 

Alternatively, (3.1a) can be expressed in a profit maximization form, where d 

represents the profit gained as offset by the cost of expansion in c; however, 

throughout this dissertation the text assumes a minimization objective. 

Additionally, all formulations assume that a finite optimal solution exists for 

(3.1a). Although problem specific, this condition can be explicitly guaranteed by 
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including a set of error vectors to formally insure feasibility, yet indicating 

through their presence in any optimal bases of constraint violations (see Mulvey 

1993). While uncertainty can also occur in objective function and constraint 

coefficients, this dissertation follows the recent literature in restricting random 

variation to the right-side vector co - Tx. In terms of (3.1a) and (3.1b), all 

coefficients possess a fixed value except co and T, where the model assumes that a 

finite mean and variance exists for each element. Finally, no assumption is made 

on the independence of the random components of (O and T. 

The literature provides two important characteristics of Z(x): (1) Z(x) is a 

convex linear function of x (piecewise convex linear function for finite 

realizations of CO and T); and, (2) the only true decision vector is x, since y 

deterministically follows the decision vector x and the realization of the random 

variables in CO and T. Consequently, a second-order polynomial approximation 

can be fit to the true function Z(x) in the region of optimality (defined shortly) 

using estimates derived from a Monte Carlo simulation. Indeed, in theory during 

the course of the simulation of Z(x) several responses to x could be approximated: 

1. Point estimates (and associated upper and lower confidence intervals) of 

the first- and second-moments of the distribution describing /i(x,co,T). 

2. The relative frequency of different bases of the recourse problem /J(X,CO,T) 

being optimal. 

3. By extension of item (2), the estimated values of y for (3.lb). 
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However, for several reasons this research will fit a response surface only to Z(x). 

First, the primary focus of this work is to establish —for the first time — the 

principle and techniques of fitting a response surface to an important aspect of 

(3.1a). Second, this inquiry presents search techniques that rely heavily on the 

convexity property of Z(x); conversely, such characteristics for any other response 

has yet to be shown. Finally, the dynamic and generally unknown nature of the 

underlying distribution of h(x,(ü,T) strongly suggests proceeding with a non- 

parametric investigation of the region of optimality rather than trying to fit a 

response to higher-order moments (Wilson 1995). Therefore, this dissertation 

leaves other single — or multiple — response estimations for future study. 

The following definitions represent the primary terminology used 

throughout this dissertation: 

Definition. Let mp.ia) and W(3.ia) represent the number of constraints and 

variables, respectively, for (3.1a). Similarly, let mp.ib) and «o.ib) denote 

the row and column dimensions for (3.1b). 

Definition. Let X = {x : Ax = b, x > 0}. 

Definition Let x* represent the optimal solution that minimizes Z(x); i.e., 

Z(x*) = MIN Z(x). Define region of optimality as the set {x': Z(x') < Z(x*) 

+ e, e > 0, x' e X}; i.e. those feasible solutions x' whose objective values 

Z(x') are near-optimal (as defined by e). 
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Definition. Let xev represent the optimal solution for the expected value 

approximation MIN{CX + /Kx,E[co],E[T])}, s.t. xel (Recall (2.9) in 

Section 2.3.1.) 

Definition. Let k be an identifying variable for the iterative sequence of 

first-stage vectors xi, x2, ... , xk, ... , xK as determined by a search 

algorithm described in Section 3.2, and let K denote the total number of 

distinct x in the sequence where x% = x* or XK = x'. 

Definition. Let z,* = cxk + Ä(XfcCD,-,T,-); i.e., zik represents the objective 

value given x^ for the 0 realization of CO and T. 

Definition. LetZs(x) represent an unbiased estimator of Z(x) using 

sampling technique s. %{x) will be substituted for Z(x) in problems where 

calculating Z(x) is computationally prohibitive. 

3.1.3 Example Problem (APL1P) 

The recourse problem and formulation in Figure 3.1 (provided by Morton 

(1995) and Infanger (1994)) describes the power generation problem APL1P, 

where the first-stage decision consists of 2 variables x' (i = 1, 2) that model the 

supply capacity of their respective source nodes 1 and 2 (the constraints 

associated with the lower bounds x' > 1 correspond to the Ax = b portion in 3.1a). 

The oy reflects the stochastic demand of the destination node j (the CD portion in 

(3.1b)), while £n and £22 represent variation in supply availability (these elements 

correspond to the T matrix). Finally, yv represents the second-stage (recourse) 
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decision variables that minimize the cost of meeting the demand given the 

capacity of supply x» and realization of the stochastic demand oV (their 

technological coefficients constitute W and assume a transportation problem 

structure). Representing a standard characteristic of these problems, the recourse 

decision variables y3-/ model the options of purchasing supply outside of the 

system's capacity as reflected by the higher unit costs d3J; plus, with no upper 

bound they guarantee a feasible solution for any value x and realization of 0). 

Given its small dimensionality, APL1P provides an excellent case study for 

graphically demonstrating the proposed techniques for fitting and analyzing a 

response surface to Z(x). Therefore, Chapters 3 and 4 will refer to this problem as 

needed for illustration. 

3.2 NON-LINEAR SEARCH TECHNIQUES 

3.2.1 Introduction 

The objective of deriving a low-order polynomial approximation to the 

estimated response Z(x) clearly requires experimental data on how Z(x) responds 

to changes in x. Formal experimental designs provide the best method for 

estimating such an approximation (Box and Draper 1987), but ultimately they 

require knowing where to center the experimental design, which independent 

factors to include, what levels or values to set them at, and what type of design 

structure to use. Furthermore, the known convexity of Z(x) notwithstanding, the 

potentially enormous size of X dictates that a quadratic approximation will best fit 

only a small portion of the sample space (with the evident area of interest being 

49 



the region of x*). Finally, due to its h(x,(0,T) component Z(x) itself must usually 

be estimated except for relatively small and discrete distributions of oo and T. 

Obviously, such experimental design information about any recourse problem of 

the form (3.1) is not known beforehand and must therefore be found. 

Consequently, this dissertation proposes adapting several search methods from the 

simulation and non-linear programming literature as techniques for producing 

data in a way that allows the construction of a formal experimental design within 

the region of optimality, and thus deriving an accurate response surface 

approximation. 

The fundamental idea of all the proposed methods involves searching X 

using an iterative sequence xi, x2, ... , x^, where Z(xi) > Z(x2) > ... > Z(xk), for 

two basic purposes: 

1. Optimality. Finding x*, Z(x*) = MIN Z(x), is the logical conclusion of the 

iterative search sequence Xi, x2, ... , x*. However, in moving beyond just 

discovering an optimal solution to the next step of deriving a response 

surface approximation and characterizing the region of optimality, x* plays a 

crucial role as the experimental design centerpoint. Also, in the case of 

multiple optimal solutions, the range of the elements of n optimal vectors x*i, 

x*2, ... , x*„ provides guidance on how to scale the elements of the 

independent vector x in the formal design. 

2. Factor Screening. As a byproduct of acquiring x*, the sequence of first-stage 

vectors xi, x2, ... , x*, and associated estimated responses Z(xi), Z(x2), ... , 

Z(x*), form a data set for the purpose of screening the elements of x for 
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significant effects on the estimated response Z(x). As Section 4.3 explains, 

such preliminary factor screening can help reduce the size of the formal 

experimental design used to calculate the response approximation. 

The necessity of screening the components of x motivates the use of gradient- 

based search techniques over LP-based decomposition methods. Indeed, what the 

literature often views as disadvantages of such line-search techniques — slow 

convergence, sampling and comparison requirements — can prove advantageous 

(within reason) by providing ample experimental data to effectively reduce the 

number of independent variables. 

As reviewed in Section 2.3.4 most search techniques find a directional 

vector dfc (not to be confused with the recourse cost vector d in (3.1b)) from an 

incumbent feasible solution x# such that the following conditions hold for a 

minimization objective of (3.1): 

x*+i =xk+ pjidfo (3.2a) 

Pk>0 (3.2b) 

Axfc+i = b, Xfc+i > 0 (3.2c) 

Z(xk+1)<Z(xk). (3.2d) 

Note that (3.2) is equivalent to the projection operator often seen in the stochastic 

programming literature (see Section 2.3.4). Furthermore, given the known 

convex nature of Z(x), (3.2) implies that for any descending directional vector d& 

of any xk where Z(xk) > Z(x*), there exists an optimal p*k such that for any pj * 

p*k, Z(xfe + p*fcdfc) < Z(xk + Pjdk). Therefore, the three search methods explored in 
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this research — Geometric Simplex, Projected Gradient, and PARallel TANgents 

(PARTAN) — must estimate two components: (1) the steepest directional descent 

vector djt and (2) the optimal scalar multiple p**. 

3.2.2 Geometric Simplex 

3.2.2.1 Introduction and Definitions 

The geometric simplex search this effort implements follows the simplex 

search algorithm originally proposed by Spendley, Hext, and Himsworth (1962), 

as modified by Neider and Mead (1965) and Barton and Ivey (1991). (For the 

remainder of this dissertation, the term simplex refers to the geometric simplex 

search as described in this section, and should not be confused with the linear 

programming optimization algorithm of the same name.) As explained by Barton 

and Ivey 

For a function of n parameters, the algorithm maintains a set of n+1 points 
in parameter space. This set of points defines a simplex in n dimensions. 
In two dimensions, the simplex would be a triangle; in three, a tetrahedron. 
The Spendley et. al. algorithm incorporates a regular simplex (i.e., all 
sides have the same length) which does not vary in size. The function is 
evaluated at each point of the simplex. The simplex then moves toward 
the optimum by reflecting the point with the worst function value through 
the centroid (average) of the remaining n points. In two dimensions, this 
can be visualized as flipping over a triangle to move it down a hill (Barton 
and Ivey 1991,945). 

Barton and Ivey show how Nelder-Mead modifies the Spendley et al. approach by 

allowing the shape of the simplex to change (thus allowing for quicker 

convergence). In terms of (3.2), this means x* represents the vertex with the 

highest objective value in the current simplex, and its reflection through the 
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centroid of the remaining points determines the directional vector of descent d&. 

The simplex converges towards x* by iteratively replacing xk with a new solution 

Xfc+i found along the directional vector d* whenever Z(x^+i) < Z(\k), and stops 

when meeting a predetermined termination criteria. Referring to Figure 3.2 

below, these simplex moves include: 

1. Reflection. The reflection vector extends beyond the centroid in the direction 

a* to a candidate point xr outside the boundaries of the current simplex. 

2. Expansion. If Z(xr) < Z(Xjt), the algorithm finds another candidate point xe 

further away from the simplex in the direction dfo and compares Z(xr) to 

Z(xe). 

Reflection 

x, 

X*"^^7 
Contraction Shrinkage 

Expansion 

Enlargement 

Fig. 3.2. Geometric Simplex Moves 
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3. Contraction. If the reflection point Z(xr) > Z(xk), the algorithm finds another 

candidate point xc (using d*) either closer to the centroid, or within the 

simplex boundaries, and compares Z(xc) to Z(x^). 

4. Shrinkage. If both the reflection point Z(xr) > Z(Xfe) and the contraction point 

Z(xc) > Z(Xjt), then the algorithm shrinks the simplex by moving its points 

closer to the best vertex, while keeping the best vertex constant (Barton and 

Ivey 1991). 

Since preliminary research indicates that item (4) often causes a premature 

collapse of the simplex when used on (3.1a) this study adds a fifth option: 

5. Enlargement. Expand the simplex by extending its points through the best 

vertex to a greater distance on the other side (while keeping the best vertex 

constant). In effect, flipping and expanding the simplex about its best point. 

Item (5) also has the added benefit of providing additional sampling of the 

parameter space needed for preliminary factor screening. Finally, as explained 

shortly the simplex search this dissertation implements restricts itself to two 

entering candidate evaluations: an interior point xc halfway between the leaving 

candidate x^ and the centroid; and, an exterior point xe outside the simplex half- 

way to a boundary constraint defined by X. 

Definition. Let a point or vertex in the simplex be a feasible vector x of 

full dimension np.ia) and Z(x) the objective function value as defined in 
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(3.1). Defining / = np.ia) + 1 to be the number of vertices in the simplex, 

let i index x,- such that Z(xi) < Z(x2) < ... < Z(x2) < ... < Z(x7). 

Definition. LetX* = {*«: x,- € X,i = 1,... , /} represent the k& simplex for 

(3.1), and by previous definition Xk c X. Furthermore, letting \i>k 

represent x, e Xk, then for any entering candidate x^+i € Xk and leaving 

candidate x,,* £ Xk+i, Z(xjik+i) < Zfe-./,*). 

The last definition states that the objective function value for the entering 

vertex must be better than the «ebbest vertex value from the leaving candidate in 

the current simplex. This comparison helps prevent the search from stalling, as 

well as avoiding using the best vertex (xi) as a leaving candidate. 

The simplex search algorithm can now be stated using these definitions: 

Definition. Let c,^ represent the centroid whenx,^ is the leaving vertex in 

simplex Xk. Define diik = (I -1)-1 (x/'i,* + x/2)* + ... + X/'M,* + x/'i+u + • • • + 

x//jt) for,/ = 1, ... , n(3.ia). Since C;,* is a convex combination of simplex 

vertices, c^ e X. 

Definition. Let r^ represent the reflection vector when x^ is the leaving 

vertex in simplex Xk and c^ is its associated centroid. Define ritk = c^ - 

x^jfc. Since c^ e X and x,-^ e X, Ar^ = Ac^ - Ax^ = b - b = 0. 

Definition. Let pfe represent a scalar multiple of the reflection vector riik 

such that the entering vector x^+i = c^ + piFi,h and p^ > 0. 
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Definition. Let R^ = MIN \ —^- forj =1 ... np.ia) andr^<Ok Since 

Ar^ = 0, the entering vector x^+i will be feasible to Ax = bfor any value 

of pk- However, since x > 0 and p^ > 0, the only way any element of x^+i 

can be less than zero is if xi^ < 0. Therefore, R* represents the maximum 

scalar multiple of r^ such that Xj^+i e X, i.e., Pk ^ Rfc- 

3.2.2.2 Geometric Simplex Algorithm 

STEP 0. (Initialization). Establish the first simplex vertex using the 

optimal solution xev from the expected value approximation. Randomly 

select remaining I - \ vertices labeled xo for initial simplex X\. Estimate 

Z(x,) and re-index on i using the relationship Z(xi) < Z(X2) < ... < Z(x,) < 

... < Z(x/). Set simplex counter index k = 1 and i = /. Set N (the 

terminating number of vertices) and vertex counter n = 1. 

STEP 1.   If n > N STOP.   Otherwise, find c,-^ and r^.   Calculate two 

entering candidates: xc = c,jt - .5r5^ and xe = c,jt + -5R^r5^.  Compare 

Z(x,-_ij/t) to MTN {Z(xe), Z(xc)} using the following guidelines. 

If MIN{Z(XC), Z(xe)} < Z(xM;fc) go to STEP 2. 

If MIN{Z(XC), Z(xe)} > Z(x,.i,fc) go to STEP 3. 

STEP 2. Replace Z(xit*) with MIN {Z(xc), Z(xe)}, and x^ with appropriate 

xe or xc. Set k = k + 1. Re-index on / using the relationship Z(xi) < Z(x2> 

< ... < Z(x,) < ... < Z(x/). Set i = /, and increment n = n +1. Go to STEP 1. 

STEP 3. Set i = i-1. If i = 1 go to STEP 4; otherwise, go to STEP 1. 
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STEP 4.   Based on the number of previous visits to this step do the 

following: 

Shrinkage. Shrink the simplex by contracting X2, ... ,x/ to one-half their 

current respective distance from xi if first or third visit to STEP 4. 

Enlargement.   Enlarge the simplex by moving X2, ... ,x/ through Xi to 

nine-tenths their current respective distance to the opposing feasible 

boundary if second visit to STEP 4. 

Re-initialization.    Otherwise re-initialize simplex by following the 

procedures in STEP 0 except: (1) Retain current xi instead of xev; and, (2) 

Retain current value for n. Go to STEP 1. 

3.2.2.3 Implementation 

The termination criteria of a preset number of vertices highlights the major 

drawback of the simplex search — its inability to confirm an optimal solution. 

Instead, it must assume an optimal solution has been found through other 

methods, such as an absence of any improving moves or reaching a predetermined 

standard error of the response estimate (Barton and Ivey 1991). In theory, the 

stopping criteria would concur with Z(xi^) = Z(x*); however, in practice the 

variation of the response estimator Zy(x) can cause false convergence. Quoting 

Barton and Ivey again 

The Nelder-Mead algorithm is widely used for simulation optimization, 
where the functions it optimizes are often subject to random noise. The 
algorithm is robust to small inaccuracies or stochastic perturbations in 
function values. This is because the method uses only the ranks of the 
function values to determine the next move, not the function values 
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themselves. Perturbations that do not change the ranks of the values will 
have no effect on the algorithm's search trajectory. 

If this noise is substantial, it will lead to inappropriate rescaling 
operations, resulting in false convergence. Empirically, this problem often 
manifests itself as inappropriate shrink steps. Once begun, this reduction 
in the simplex size can reduce the variance of the simplex function values 
below the system's inherent variability before the optimum region has 
been reached (Barton and Ivey 1991,946-947). 

Unfortunately, preliminary tests showed that the variance of /i(x,co,T) can indeed 

be substantial, and thus adversely affect the ordinal ranking of Z^x,-) the simplex 

method depends upon to find d^ and p^. However, these tests also indicate that 

the simplex search finds the region of optimality fairly quickly if, as in STEP 4, it 

avoids a premature collapse through (1) periodic enlargement and (2) non- 

repetitive shrinkage. 

The termination criteria, and ultimately the simplex technique itself, 

assumes that the scope of the search will provide enough information about the 

region of optimality to insure a positive definite fit for the final response surface 

approximation of Z(x). This procedure also assumes that the subsequent 

investigation of the minimum ridge estimates (see Section 4.4) will further 

characterize the region of optimality, and identify any improvements over the 

incumbent solution. Finding the optimal solution in this manner follows the main 

idea of steepest descent methods in the response surface literature, except the 

simplex method has been substituted for the first-order designs (see Montgomery 

1984, or Box and Draper 1987). Finally, variance reduction techniques explored 

in Section 4.2 may reduce the variation of h(x,co,T) to the "...small inaccuracies or 
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stochastic perturbations in function values..." Barton and Ivey claim as acceptable 

for the simplex search. 

3.2.2.4 Example Simplex Search for APL1P 

Figure 3.3 illustrates the first two iterations of a 20-iteration simplex 

search path for the APL1P problem, and highlights the initial simplex shape and 

its form after the entry of x2 (Table 3.1 provides the simplex data for all 20 

iterations). As a two-dimensional space, APL1P requires three vertices, with the 

initial simplex (outlined by the upper triangle) using the expected value 

approximation solution (xev) and two randomly selected ones (xo). The first 

iteration replaces the most expensive xo with xi through an expansion move, 

while the second iteration candidate x2 replaces the other x0 with a contraction 

move. After two moves the simplex X2 (outlined by the lower triangle) is 

significantly closer to the region of optimality. The simplex continues to contract 

until undergoing a shrink-enlarge-shrink cycle after iteration 17. After two 

additional contractions, the simplex re-initializes and undergoes one additional 

contraction before terminating. The final near-optimal solution x' = X19 = 

(1708, 1685) and Z(x') = 24647.49, compared to x* = (1800, 1570) and Z(x*) = 

24642.29. 
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Figure 3.3. Example Geometric Simplex Moves for APL1P 

3.2.3 Projected Gradient 

3.2.3.1 Introduction and Definitions 

The relationship described in (3.2) requires three basic operations at each 

iteration: (1) finding a directional vector d* satisfying Ad^ = 0; (2) deriving an 

optimal p*jt such that for any p;- * p*h Z(xk + p**«!*) < Z(xk + pjdk); and, (3) 
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TABLE 3.1 
EXAMPLE GEOMETRIC SIMPLEX MOVES FOR APL1P 

(RANDOM SEED = 440908571) 

k x Z(x) Simplex Move Replaces 

0 1529, 1625 24698.47 Initial Vertex (xev) — 

0 2437,2680 26824.78 Initial Vertex (Random Pick) — 
0 2502, 3462 28756.62 Initial Vertex (Random Pick) — 
1 1557, 1077 25216.05 Expand xe 3 

2 1990,2016 24997.72 Contract xc 3 

3 1658, 1449 24731.60 Contract xc 3 

4 1792, 1776 24676.73 Contract xc 3 

5 1659, 1575 24670.40 Contract xc 3 

6 1623, 1650 24661.63 Contract xc 3 

7 1718, 1694 24647.60 Contract xc 3 

8 1666, 1624 24657.75 Contract xc 3 

9 1660, 1655 24653.83 Contract xc 3 

10 1677, 1649 24651.15 Contract xc 3 

11 1679, 1663 24649.44 Contract xc 3 

12 1688, 1664 24648.67 Contract xc 3 

13 1691, 1672 24648.20 Contract xc 3 

14 1696, 1673 24647.70 Contract xc 3 

15 1699, 1678 24647.69 Contract xc 3 

16 1702, 1680 24647.59 Contract xc 3 

17 1709, 1689 24647.50 Contract xc 3 

0   — Shrink — 
0 — — Enlarge — 
0 — — Shrink — 

18 1707, 1685 24647.53 Contract xc 3 

19 1708, 1685 24647.49 Contract xc 3 

0 1708, 1685 24647.49 Best Vertex from Prev. Simplex — 
0 1722, 2361 25134.60 New Vertex (Random Pick) — 
0 1176, 1015 25727.43 New Vertex (Random Pick) — 

20 1445, 1519 24792.78 Contract xc 3 

recognizing when Z(x* + pVt) = z(x*) = MlN z(x)- The projected gradient 

method adopted by this study accomplishes these operations through a synthesis 

of the following ideas from the literature: 

1.        Using a concept first explored by Ermoliev (1983, 1988) within the 

context of the recourse problem, the dual variables provide an 
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unconstrained steepest descent gradient VZ(x^) for the first-stage variables 

x. (Also see Murty 1983 for the theoretical LP background on dual 

variables as gradients.) 

2. Gaivoronski's (1988) averaging, or statistical estimation, technique for 

cases where the estimate of the unconstrained steepest descent gradient is 

a function of a random variable; i.e., VZ(x,o),T). 

3. Active set methods, whereby any 'true' equality constraints (i.e., no slack 

variables present), plus any inequality constraints whose slack variables 

currently equal 0, define the 'working surface' upon which a projected 

steepest descent gradient VZ(XJO produces a direction vector d& such that 

Adfc=0. 

4. Estimating the stepsize variable p* by fitting a quadratic model along the 

direction of descent defined by d& using standard linear regression (Fu 

1994, Luenberger 1989). 

Applying steepest descent methods from the non-linear programming 

literature to the class of problems (3.1) describes comes with several caveats. 

First, in a deterministic setting active set methods can determine whether x& is 

optimal, or otherwise provide active constraint relaxation guidelines to continue 

the search for x* under the Kuhn-Tucker Theorem (Luenberger 1989). By 

contrast, the statistical estimation (when necessary) of the unconstrained descent 

gradient VZ(Xfc,G),T) implies the presence of error similar to that associated with 
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Zy(x). Second, the non-differentiable property of E[h(x,(0,T)] suggests that — 

barring multiple optimality — VZ(x*) will never equal zero. Consequently, 

terminating the projected gradient algorithm will require the heuristic stopping 

rules proposed shortly. 

The following definitions explain the terminology of the PROJECTED 

GRADIENT ALGORITHM. 

Definition. For the vector x* e En<3-la> let A* represent the matrix 

composed of the active rows from Ax = b, and rows from x > 0 where x'* 

= 0,/= 1, ... ,7Z(3.ia). 

Definition. Let Vz(x^,C0i,T,) be the unconstrained gradient for the i& 

realization of x^. 

Definition. Let VZy(x^) represent the unbiased estimate of VZ(x^) for 

sampling technique s. 

Definition. Let d* represent a feasible direction of improvement; i.e. 

VZ^(xifc)dJk<OandAdjk=0. 

Definition. Let J* be the projection matrix where d* = -J^ • VZs(x^). 

Definition. Let P^ represent the minimum scalar value of dk at which a 

non-active non-negativity constraint yJ > 0, yj £ A*, goes to 0; i.e., the 

vector xfc+i = x* + p*dfc such that xk+i e X only when 0 < p^ < P*. 
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Definition. Let y e En(3-la> be the stopping criteria for projected gradient 

search. 

Definition. Let Q represent the number of independent estimates of Z(x) 

taken at equal distances along the vector starting at \k in the direction of dk 

and ending at xk + Pkdk. Then where qt = (g - l)"1' (i -1), i = 1,... , Q, let 

*k,qi = Xjt + qPlAh and Z(*k,qi) = Z(xk + q^id- 

Definition. LetZLN(xk,q) = Z(xk + qPiflk) + £k,LN and ZQD(xk,q) = Z(xk + 

qPiAh) + £k,QD represent first- and second-order polynomial 

approximations, respectively, of Z(xk + qiP/Ak) as functions of x* and q, 0 

<q<\. 

3.2.3.2 Projected Gradient Algorithm 

STEP 0. (Initialization) Set k = 1 and n = 1. Select xk. Select stopping 

criteria y and maximum number of iterations N. Construct active set 

matrix A^ using row vectors from Ax = b, and from x > 0 for any x1'* = 0. 

Estimate and record Z(XJO- 

STEP 1. Calculate VZj(xfe). Find d* by projecting VZj(x^) onto A* using 

projection matrix J*. If dk < \y\ orn > N, STOP. Otherwise, find Pk select 

Q, estimate and record Z(xktqi), i=l,... ,Q. 

STEP 2. Derive Zufok& and ZQD(xk,q). Select q* under the following 

guidelines: 
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Quadratic Significance.  lfZQD(xk,q) significant find «* by setting 

derivative of ZQo(Xk,q) with respect to q equal to zero and solve. If q* < 0 

set«* = .01. If«* >1, set«* = 1.0. 

Linear Significance.   If Zu^x^q) has a negative slope set «* = 1.0; 

otherwise set «* = .01. 

Neither Fit Significant. Set «* = .01 

STEP 3. Set x^+i = xk + q*PiAb A*+i = Afc and 3k+i = Xk Set k = k + 1. 

Estimate Z(xk) and x*. Check xk for either (1) x'* > 0 where x'ti = 0 or (2) 

xl'fc = 0 where x'k-\ > 0. If (1) occurs remove x'** from A^; if (2) occurs add 

x'jfc to A*. If either (1) or (2) occur (i.e., Ak * A^i), recalculate P*. Return 

to STEP 1. 

3.2.3.3 Theoretical Development and Implementation 

The structure of (3.1) requires that the respective dual variable information 

for the x variables must come from the recourse problem (3.1b). Given the 

following primal (3.3a) and dual (3.3b) formulations 

h(x,(0,T)  =   MiNdy 

s.t.     Tx +   Wy   = (D 

y   >  0 (3.3a) 

h(x,(£>,T)  =   MAXTC(CO-TX) 

s.t. 7tW   < d 

it Unrestricted (3.3b) 
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Ermoliev (1983,1988) shows that for the 0 realization of © and T 

-Vz^c + itftT (3.4) 

and for xk the unbiased estimate of the unconstrained steepest descent gradient for 

sample size N is 

-Vtfok^iz-Vz*. (3.5) 
i=l 

Unfortunately, A[-VZs(xk)] may not equal 0; therefore, a directional vector dk that 

remains feasible beyond just the tangential point of the constraints to Z(x) must be 

found by projecting -VZs(Xk) onto the set of active constraints. This active set 

method of gradient projection follows the description in Luenberger (1989) as 

originally suggested by Rosen (1960) and Gill, Murray, and Wright (1981). 

From the definition of a plane, the row A»\ of Ak is a normal vector to the 

subspace defined by the constraint. Therefore, any vector in the Euclidean space 

En(3.ia) (specifically -VZs(xk)) can be defined as a linear combination of d* and the 

rows in A& The projection matrix J can then be derived starting with 

-VZs(xk) = dk+(\kFh. (3-6) 

Multiplying (3.6) by Ak and using A*dfc = 0 gives 

-AjtVZ^x*) = A*d* + AtfA*)1** = MAk)Th (3-7) 

and multiplying (3.7) by [Afc)(Ajt)
T]-1 reduces to 

?^=[A*(A*)T]-iA*VZ,(x*). (3.8) 
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Substituting Xk from (3.8) into (3.6) gives 

d^ = -JfeVZy(xjt) (3.9) 

where the projection matrix Jk is defined as 

I-tA^WA^A*. (3.10) 

Accordingly, for each x^ a directional vector dk (where Ad^ = 0) can be found 

using the unconstrained gradient estimate -V%(xk), and the projection matrix Jk 

(3.10) based on the current active matrix A*, with the relationship (3.9) 

(Luenberger 1989). 

The directional vector d* guarantees that the constraints in the current 

active set Ak will not be violated. Specifically, for any pk > 0 the vector xk+\ = xk 

+ p*dfc will be feasible to Ax = b. However, following an identical argument from 

the GEOMETRIC SIMPLEX ALGORITHM, since x > 0 and p*k > 0 the only way any 

x'jfc+i can be infeasible is if d1* < 0 (since x'*+i = x'* + p*d'* < 0). Therefore, it 

follows directly that 

?k = MIN | -|*-   for i = 1 ... n(3.ia) and d«* < oj. (3.11) 

Furthermore, given the known convexity of Z(x), there exists an optimal 

multiplier 0 < p*k < Pk for dk such that for any 0 < p; < Pk, pj * p*k, Z(xk + p*kdk) 

< Z(xk + pjdk).  The literature refers to finding this optimal p*k as the stepsize 

problem, which the following section addresses. 

67 



Fu (1994), in the context of response surface sequential search (also see 

Box and Draper 1987), suggests solving the step-size problem by formulating a 

line search defined by the descent gradient as a one-dimensional optimization 

problem and fitting a second-order polynomial. This approach offers a special 

appeal for finding MIN Z(x) due to Z(x)'s known convexity and global optimal 

characteristics; and, partially addresses concerns expressed in the literature over 

selecting inefficiently small or large step-sizes (Sivazlian and Stanfel 1975, 

Luenberger 1989). Therefore, this research extends Fu's idea by testing for 

quadratic significance versus a first-order fit and selecting the best step-size 

within the constraints defined by X. 

The basic idea involves deriving a linear and quadratic approximation of 

Z(Xfc) as a function of q; i.e., 

^Lt^kS = ßo + ßitf + Zk,LN (3-12) 

and 

^QD^kS = ßo + ßitf + fal2 + Zk,QD (3.13) 

where 0 < q < 1, based on data derived from an equidistant sampling of the 

directional vector d^ from the incumbent solution x^ to the bounds defined by x > 

0. For example, if Q = 6, then the line segment starting at x^ and ending at x^ + 

P*d* will be sampled at intervals of 0.0, 0.2, 0.4,0.6, 0.8, and 1.0 multiples of Pfo 

and (3.12) and (3.13) derived using qt as the independent variable and Z(xk>qi) as 

the dependent variable. 
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The algorithm allows for several subjective interpretations. First, the 

selection of Q in STEP 1 involves a trade-off between more accurate regression 

estimates on the one hand, and additional computational time on the other. This 

research initially uses a standard factor of Q = 6 as a compromise, although the 

program code allows for Ö < 10. Second, as in most regression studies the term 

'significant' depends on the views of the analyst and the context of the analysis 

(see Draper and Smith 1981). Preliminary research indicates that the combined 

effects of the variance of h(x,(0,T) and the 'flatness' of the region of optimality can 

create lack of fit results near constraint boundaries or the optimal point. 

Consequently, requiring too high a fit would significantly lengthen the search 

process. Therefore, 'significance' in this study constitutes an R-Square fit greater 

than 0.9. Third, STEP 3 tracks the changes in x^ to avoid recalculating the 

projection matrix when there is no need to do so. Fourth, depending on its 

location in X the algorithm's quadratic approximation in STEP 3 can easily decide 

on either a negative value of q*, or one greater than 1.0 — either case an 

obviously false estimate assuming the correct directional gradient. The former 

can occur as the search approaches x*, whereas the latter typically would happen 

whenever Z(Xjt) » Z(x*). These conditions would thus suggest using the 

predetermined increments 0.01 and 1.0, respectively. 

Finally, a word about the termination criteria. Recognizing the limitations 

of estimating both Z(x) and VZ(x^) by using pre-determined stopping criteria y 

and N does not detract from stopping at a near-optimal solution x'. Recalling the 

principal objective of deriving a response surface approximation of Z(x) through 

experimental design, Z(x') or Z(x*) represents the starting point of the process. 
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Ermoliev (1988) emphasizes this practical viewpoint from the context of finding 

the optimal solution using stochastic gradient methods; thus, it follows that by 

conducting this search within the more practical context of response surface 

approximation, terminating the search with a near-optimal solution is justified. 

3.2.3.4 Example Projected Gradient for APL1P 

Figure 3.4 (based on Table 3.2 below) provides a graphic illustration of 

the PROJECTED GRADIENT ALGORITHM applied to the APL1P problem. Starting 

with an initial solution xi = (3600,3600), the algorithm very quickly moves to the 

region of optimality (as compared with the GEOMETRIC SIMPLEX ALGORITHM), but 

slows appreciably afterwards in finding the optimal point. This slowdown most 

likely results from less accurate estimates of q* provided by the quadratic 

estimates of a relatively flat region in the direction of least sensitivity. Such 

inaccuracy manifests itself by the small negative estimates of q* for X4 - xio; in 

TABLE 3.2 
EXAMPLE PROJECTED GRADIENT ITERATIONS FOR APL1P 

(SCENARIOS = 1280, Q = 6) 

k X r Ji Est. q* Act. Q R2 Z(x)t 

1 3600, 3600 3.28, 2.42 .613 .613 .990 32224.4 

2 1394, 1969 -.094, .105 .079 .079 .995 24693.1 

3 1532, 1815 -.103, .052 .044 .044 .999 24667.7 

4 1623, 1769 -.048, .104 -.158 .010* .995 24657.1 

5 1632, 1751 -.050, .100 -.168 .010* .995 24654.9 

6 1640, 1733 -.050, .097 -.185 .010* .995 24652.7 

7 1649, 1716 -.081, .069 -.022 .010* .999 24650.7 

8 1669, 1700 -.068, - .007 -.183 .010* .998 24649.3 

9 1688, 1701 -.035, .022 -.019 .010* .999 24648.6 

10 1707, 1689 -.035, .022 — — — 24647.6 

* - Manual Input t - Z(x*) = 24642.3, x * = (1800,1570) 

70 



35- 

30- 

25- 

I 
I 20-1 

: 15500 

8 15 H 
u 
X 

10-1 

5- 

25500 

27500- 
1 1 1 i r~ 
5 10 15 20 25 

XI Capacity (In Hundreds) 
30 

T 
35 

Figure 3.4. Example Projected Gradient Iterations for APL1P (X4 - x9 Omitted) 

these cases the estimated quadratic fit places the minimum point behind the 

direction of descent (and thus requiring a .01 input for the stepsize). This 

phenomenon most likely occurs due to the incumbent x^ being so close to the 

optimal solution that most (or all) samplings of the directional vector d^ are 

greater than Z(x*), thus forcing a least-squares estimate of a curve with minimal 

sampling in the opposite direction. Nonetheless, the algorithm provides accurate 
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directional information even as the stepsize problem prevents a quicker 

convergence. 

3.2.4 Parallel Tangents (PARTAN) 

3.2.4.1 Introduction and Definitions 

Both Luenberger (1989) and Sivazlian and Stanfel (1975) discuss the 

special PARTAN procedure adapted by this dissertation. As shown in Figure 3.5, 

the basic idea involves finding a point p^ in the x parameter space using a steepest 

descent technique (in this case the PROJECTED GRADIENT ALGORITHM) from xk 

such that Z(p*) < Z(xk). Then, x*+i is found by minimizing Z(x) along the line 

defined by Xjt-i and p*. Furthermore, at each iteration xk is checked for optimality 

Projected Gradient 

Line Search/MiN. 

Figure 3.5. PARTAN Iteration 
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as it would be under the PROJECTED GRADIENT ALGORITHM, including any 

adjustment to its active matrix constraint Ak. The formal definitions and 

algorithm are described below. 

Definition. Let p* be the next point in a PROJECTED GRADIENT ALGORITHM 

with respect to x*; i.e., pk = xk + q*^^. 

Definition. Let tjt represent the vector defined by p* and xk.\; i.e., t* = p* - 

Xjfc-1- 

Definition. Let^ = MINI   -A*-  fori= 1 ... n(3.ia) andd'*< 0 . 

Definition. Let R represent the number of independent estimates of Z(x) 

taken along the vector starting at xk_i in the direction of tk and ending at pk 

+ §ktk. Then where r,- = {R - l)"1 • (i - I), i= I, ... , R, let xjt+if„- = xkA + 

Definition. Let xk be the current minimum point found by minimizing 

along the line defined by xk_2 and p^; i.e., x* = xk.2 + r*,-<|>Jfc-itfc-i- 

3.2.4.2 PARTAN Algorithm 

STEP 0. (Initialization) Select xo e X. Estimate xi = xo + gVodo usinS 

the PROJECTED GRADIENT ALGORITHM. Set k = 1, n = 1, the maximum 

number of iterations N, and stopping criteria y. 

STEP 1. Calculate pfc = xk + q*i£i£k using the PROJECTED GRADIENT 

ALGORITHM. If dk < \y\ or n > N STOP. Otherwise find xk+i by minimizing 
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along the entire feasible line defined by x^.i and pk, i-e., find r*,- using the 

quadratic fit procedure described in STEP 2 of the PROJECTED GRADIENT 

ALGORITHM such that Xjt+i = xfc-i + r*,-<|>j&. Set k = k + 1, n = n + 1, and 

repeat. 

3.2.4.3 Theoretical Development and Implementation 

One notable change from the PROJECTED GRADIENT ALGORITHM involves 

the line minimization requirement in STEP 1. In the PROJECTED GRADIENT 

ALGORITHM the quadratic fit involves the line defined along the descent gradient 

forward from the incumbent solution x* to a constraint boundary. However, the 

PART AN ALGORITHM pays the additional computational cost of searching the 

entire feasible line both forward and behind p&. This difference stems from the 

unique objectives and assumptions of the two algorithms. At each iteration the 

PROJECTED GRADIENT ALGORITHM focuses on the stepsize problem while assuming 

it has the correct directional descent vector; hence, the need for estimating a 

quadratic fit ahead of xk. By contrast, the PARTAN ALGORITHM'S quadratic 

assumption avoids the stepsize problem through the use of parallel tangents; 

therefore, it concentrates instead on finding a good global quadratic estimate at 

Pk 

The PARallel TANgent (PARTAN) approach extends steepest descent 

techniques to the special case where the non-linear function being estimated is a 

positive definite quadratic (Sivazlian and Stanfel 1975). Since the projected 

gradient method falls into the class of steepest descent algorithms, and given that 
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this research assumes Z(x) can be well approximated with a quadratic fit, 

PARTAN methods provide an obvious search technique to try. Indeed, as 

Luenberger shows, for a pure quadratic function PARTAN is equivalent to the 

conjugate gradient method, which itself has "...proved to be extremely effective in 

dealing with general objective functions and ...[is] considered among the best 

general purpose methods presently available (Luenberger 1989, 238)." Similarly 

Sivazlian and Stanfel (1975) show, in theory and for a pure «-dimensional 

quadratic, how PARTAN will find the optimal solution in just n-1 optimizations. 

They also note that for non-quadratic functions, PARTAN can still perform well 

in the reduced region of optimality where a quadratic approximation would be 

more accurate. Nonetheless, the single greatest theoretical advantage PARTAN 

brings to the problem (3.1a) is its strong global convergence properties. Quoting 

Luenberger again 

Each step of the process is at least as good as steepest descent; since going 
from x* to ... [pfc]... is exactly steepest descent, and the additional move to 
Xjt+i provides further decrease of the objective function. Thus global 
convergence is not tied to the fact that the process is restarted every n 
steps (Luenberger 1989, 256-257). 

Although (3.1a) is neither deterministic or purely quadratic, the claims made on 

behalf of PARTAN justify investigating its performance within such a context. 

3.2.4.4 Example PARTAN 

Figure 3.6 shows the results of the PARTAN algorithm for the APL1P 

problem. Following Sivazlian and Stanfel's (1975) argument that where x has a 

dimension of n(3.ia) the global minimum should be found in np.ia) -1 iterations of 
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the PARTAN algorithm, Figure 3.6 and its accompanying table show just one 

cycle. As expected, the PARTAN ALGORITHM exhibits a stronger convergence 

property than either the GEOMETRIC SIMPLEX or PROJECTED GRADIENT methods; it 

achieves in two steps what took the GEOMETRIC SIMPLEX ALGORITHM seven and 

the PROJECTED GRADIENT ALGORITHM five. Furthermore, the lines in Figure 3.6, 

coupled with the fact that Z(Xfc+i) « Z(pk) and the absence of a pure quadratic fit, 
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Figure 3.6. Example PARTAN Iteration for APL1P 
(Lines Indicate Parallel Tangents) 
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TABLE 3.3 
EXAMPLE PARTAN ITERATION FOR APL1P, SCENARIOS=1280, Q = 6 

k X Est. q Act. q R2 Z(x)t 

xi 
PI 
*2 

3600, 3600 
1394, 1969 
1615,1721 
1660,1764 

.613 

.513 

.539 

.613 

.513 

.539 

.990 

.996 

.990 

32224.4 
24693.1 
24654.5 
24655.1 

t - Z(x*) = 24642.3, x* = (1800, 1570) 

suggest a major source of error stems from the inaccuracy of the quadratic 

approximation (a phenomenon also present in the PROJECTED GRADIENT 

ALGORITHM). 

3.3 LINEAR PROGRAMMING ALGORITHMS 

3.3.1 Introduction 

The cost of calculating Z(x) described in the non-linear programming 

literature from which these methods are adapted usually presumes Z(x) in a 

deterministic context. Unfortunately, in the present problem h(x,(d,T) compounds 

the computational expense by requiring statistical estimation of Z(x). Therefore, 

search efficiency is no longer solely a matter of convergence, but one of response 

estimation as well. Consequently, this research looks into two broad areas of 

efficient estimation of Z(x): Linear Programming Algorithms and Variance 

Reduction. Chapter 4 addresses variance reduction techniques, while the present 

section focuses on LP algorithmic improvements. 

Obviously, the most straightforward method for solving z# would simply 

perform a standard primal or dual simplex algorithm for each new right-side 

vector C0j - T,Xjt, and perhaps retain the previous optimal basis in the hope of only 
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having to do a couple of pivots (if any). This optimization method, called the 

OSL option after the set of IBM library routines used to implement it, constitutes 

the first choice investigated by this research. It also forms the basis for comparing 

other alternatives for finding zik that begin with an assumption hinted at by the 

idea of minimal pivot requirements. These alternatives essentially employ the 

repetitive use of either an Optimal Basis Set (OBS) or an equivalent collection of 

Optimal Dual Vectors (ODV). 

Specifically, the three proposed alternatives — the OBS-COMPLETE, OBS- 

RESET, and ODV ALGORITHMS — make the following crucial and fundamental 

assumption: If a relatively small set of optimal bases characterize a subset ofX, 

then an algorithm faster than OSL can be developed by taking advantage ofthat 

set of optimal primal bases or its equivalent dual vectors. Of course, the 

efficiency of the OBS and ODV methods depends on the size of the recourse 

problem (3. lb), the definition of the subset of X, and the size of X itself. Yet even 

for large problems, there are cases where the OBS algorithm can prove 

advantageous. The following sections develop these concepts beginning with the 

following definitions. 

Definition: Let t,* be the ith. realization of GO, - T,x^; i.e., t# = G), - T{xk. 

Furthermore, let tev = E[G>] - E[T]x. 

Definition. Let P# be the optimal recourse basis in (3.1b) for t^ = co? - 

Tixk; i.e., (P^)"1!* = y*,*- Furthermore, let Pev,fc be the optimal basis for tev 

and Xfc. 
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Definition. Let P represent a subset of the set of distinct positive cones 

containing every possible realization of co - Tx. 

Definition. Define L as the number of optimal bases in set P. 

Definition. Let the random sample t,- e {(Oj■,- T;x : x e X}, for; = 1, ... , 

J. 

Definition. Let the set T consist of sample realizations t;- which are not 

members of any positive cone defined by the elements of set P. 

Definition. For an optimal set of bases P of size L to the recourse 

problem (3.1b), where optimal basis P; e P, and / = 1, ... , L, let 7t/ be the 

optimal dual vector associated with P;, and let the set 17 of size L consist 

of the corresponding set of optimal dual vectors m,l=l,... ,L. 

3.3.2 OBS-COMPLETE ALGORITHM 

STEP 0. (Initialization) Select x and solve (3.1b) for tev. Add optimal 

basis Pev to P, associated optimal dual vector %ev to 17, set L = 1 and 

remove elements in T. Notationally, Pev = Pi. 

STEP 1. Select sample size J and obtain random samples tj,j = l,...,J, 

using for each t;- a randomly selected xe X. Set non-optimal counter n = 

0. Proceed with one of two options: 

Frequency of Optimality: Set frequency of basis optimality counter F/ = 0, 

Z = 1, ... , L. For each t/, ;* = 1,..., J, and each optimal basis P/ e II, / = 
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1,..., L, find jji = (Pi)-Hj. If jfl > 0 set F/ = FZ + 1. If yft 0 V / = 1,..., L, 

then put tj in T and set n = n + 1. Index bases in P on / such that Fi > ... > 

F/>...>FL. Go to STEP 2. 

Basic Coverage. For each tj, j = 1,..., J, find y;/ = (P/)_1t/. Terminate 

operation for current t,- upon finding first y,-/ > 0 and proceed with tj+\. If 

jji2 0 V 1=1,..., L, then put t,- in T and set n = n + 1. Go to STEP 2. 

STEP 2. If n = 0 STOP. Otherwise, set L = L + 1. Select tn from T. Solve 

(3.1b), add optimal basis P„ to P and optimal dual vector K„ to II, remove 

elements in T, and repeat STEP 1. 

3.3.3 OBS-RESET ALGORITHM 

STEP 0. (Initialization) Clear optimal basis set P associated with previous 

first-stage vector x^.i. Solve for the first sample tu using OSL, and place 

the associated optimal basis Pi in P. 

STEP 1. Select sample size J. For each following sample tyj = 2, ... ,J, 

first check for a feasible solution from set P; i.e., where (Pj)"1^ > 0, / = 1, 

... ,L and L <j. If a feasible solution is found, then by Proposition 3.1 it 

is optimal. Otherwise, solve for t^ using OSL, set L = L + 1, set P/, = P/jb 

and place P^, in P. Repeat until completing sampling requirements. 

3.3.4 ODV ALGORITHM 

STEP 0. Select sample size J. For each following sample tj,j= 1, ... ,7, 

by Proposition 3.2 find MAX{7I/((D/ - T7x); 7t; e II, I = 1,... , L}. 
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3.3.5 Theoretical Development and Implementation 

3.3.5.1 OBS-Complete and OBS-Reset 

The idea of exploiting the existence of a small number of optimal bases for 

(3.1b) is not new — it motivates the sifting algorithm of Garstka and Rutenberg 

(1973); bunching (Wets 1983, 1988) and its extension by Haugland and Wallace 

(1988); the polyhedral cone decomposition algorithm for transportation problems 

proposed by Wallace (1986); and, is informally accepted as reasonable by current 

researchers in the field (Morton 1994b). However, unlike the sifting and 

bunching approaches which presume a lattice structure of discrete values for co 

and T, this dissertation proposes explicitly decomposing the region of interest into 

optimal bases (also referred to in the literature as positive cones, polyhedral cones, 

and decision regions) under more general conditions of continuous, non- 

independent random variables in co and T, without requiring any special structural 

properties other than what is already defined for (3.1). The following proposition 

from linear programming (see Murty 1983 or Bazaraa, Jarvis, and Sherali 1990) 

as applied in the context of the two-stage recourse problem (3.1) provides the 

theoretical underpinning for this approach by showing that for any variation of the 

right-side vector that remains within a positive cone defined by an optimal basis, 

then that basis is optimal for the perturbed value. 

Definition: Let trk represent the r& realization of cor - Trx^; similarly let 

tsk represent the s& realization of (0$ - Tsx^. 
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Proposition 3.1: Unique Optimal Basis for Positive Cone 

IfPrk is the optimal basis for trk in (3.1b), then for any tsk ^trk and tsk e 

Pos(Prk), Prk is the optimal basis for tsk 

Proof: Let t^ e Pos(Pr^). By definition of positive cone there exists a vector y^ 

such that Vrkysk = tsk, ysk ^ 0 whose primal solution value is dP(Pr,)
4t^. 

Since it*rk = dp(P^)'1 dual feasibility remains unaffected, this gives the 

dual solution dpCP^)-1^. 

Since primal feasible and dual feasible solutions are equal, by 

fundamental duality Pr/t is an optimal basis for t^. ■ 

Obviously, the most efficient and useful result of Proposition 3.1 would be 

a small manageable set of optimal bases P = {P/, / = 1, 2, ... , L), such that for 

any xk e X and all realizations of co and T, Pk e P. In this case P contains every 

optimal basis (hence solution) for the entire space defined by Ax=b, x > 0, and for 

every realization of © and T; and, provides a computational improvement over an 

OSL-based algorithm in the following manner. Instead of performing the pivots 

of a revised primal or dual simplex for each new t^, the OBS algorithm checks 

for a feasible solution by multiplying t^ by the inverses of the bases in P. If a 

feasible solution is found (i.e., (P/)-JU = ^hk^ 0, P; e P), then zslc = dp(Pi)-Hsk. 

Furthermore, not every basis in P must be checked. Since Proposition 3.1 proves 

that any feasible basis in P is optimal, once a feasible basis is found the search 

may stop. (This would also suggest a rank ordering of the set P by frequency of 

optimality.) Finally, not every individual element of x^ must be checked; if x1^ 
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(the 0 element of x^) is found to be. negative, then x/j* is automatically infeasible 

and thus the algorithm can immediately skip to the next basis P/+i. 

This dissertation implements this approach using a separate program 

called the OBS-COMPLETE program. It precedes the second Monte Carlo 

simulation responsible for the experimental design (referred to as the response 

surface approximation (RSA) program) by preprocessing the recourse problem 

(3.1b) to find the complete optimal bases set P. The problem of finding all of the 

optimal bases for (3.1b) is equivalent to discovering, out of all the possible bases 

available from W, the associated positive cones contained within the requirement 

space defined by CO - Tx, x e X. The OBS COMPLETE program accomplishes this 

task through an iterative process consisting of two key steps: (1) updating the set 

of optimal bases P and (2) uniformly sampling the recourse requirement space 

against the set of optimal bases P to determine the extent that the sampled 

realizations of CO - Tx fall within the positive cones defined by current set P. 

Thus, the OBS-COMPLETE ALGORITHM essentially adds to and tests the set P until 

it possesses all optimal bases for the sampled realizations of CO - Tx. The RSA 

algorithm then uses the optimal bases set supplied by the OBS-COMPLETE program 

to estimate Z(x) and ultimately derive the response surfaces of interest. (The 

ODV ALGORITHM also depends on the OBS-COMPLETE program to supply it with 

the dual vectors associated with the primal optimal bases.) 

Although in theory such an optimal basis set can be found for any 

problem, as a practical matter only relatively small recourse problems allow such 

complete 'coverage' of the feasible region. Furthermore, at some point the size of 

the set P, in combination with the frequency distribution of optimality among its 
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elements, will offset the computational advantages just described. Yet even for 

larger problems the OBS approach can still prove helpful if the region of interest 

is a small subset of X — even to the point of being distinct vector x. Therefore, 

this research applies this basic technique in two ways: 

1. OBS-COMPLETE. This method defines the region of interest as X; in other 

words, complete coverage of the recourse requirements space co - Tx, 

xe X, can be provided by a small set of optimal bases P. 

2. OBS-RESET. This method defines the subset of X to be a single vector xk. 

In effect, this requires the optimal basis set Pk to be cleared (or 'reset') for 

each new vector x^+i. Although clearly not as efficient as the OBS- 

COMPLETE method, for larger recourse problems with numerous stochastic 

variables in a> and a bigger dimensioned x, such an approach can still offer 

computational advantages over an OSL-based estimation method. 

Unlike the OBS-COMPLETE or ODV ALGORITHMS, OSL-RESET does not 

require a preprocessed basis set. Therefore, the response surface analysis 

algorithm RSA directly incorporates the OBS-RESET ALGORITHM along with the 

OSL option. Finally, because of the additional computational and storage 

expense, OBS-RESET does not store an associated set of dual vectors since they do 

not provide any additional information on the estimate of Z(x). 
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3.3.5.2 ODV 

The third basic approach to improving the efficiency of estimating Z(x) 

from a linear programming algorithmic perspective uses the set of dual vectors 

associated with the optimal bases set P. Using an idea suggested by Morton 

(1995) and duality results from linear programming theory (see Murty 1983 or 

Bazarra, Jarvis, and Sherali 1990), the following proposition establishes the ODV 

technique. 

Proposition 3.2: Dual Optimality of the Recourse Problem 

Given a finite set of optimal bases P which contains at least one optimal 

basis for any realization of(0-Tx to the primal recourse problem MiNdy s.t. Wy 

= (O-Tx,y>0, with a corresponding set of optimal dual vectors 11for the dual 

recourse problem MAX Jt((0 - Tx), s.t. JtW < d, it unrestricted; then, for any 

realization ofm-Tx the optimal solution dy* = MAX{KI((0- TX), l- 1,2, ..., L; Ki 

en}. 

Proof: By assumption any realization of GO - Tx has the property of possessing an 

optimal basis P* e P and its corresponding optimal dual vector if e II. 

Since the dual constraint TCW < d remains constant, every %i e 17 is 

feasible for any realization of co - Tx. 

By strong duality dy* = 7C*(co - Tx) at optimality. 

By weak duality dy* > 7C/(co - Tx), TCW < d. Since by Step 1 n* e 77 and 

by Step 2 every 7C/ e  II is feasible, the optimal solution must be 
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MAX{TC/(Cö - Tx), 1=1,2, ... ,L; me II}; otherwise, it would contradict 

Step 3. ■ 

The ODV ALGORITHM directly implements Proposition 3.2 by simply 

multiplying the current recourse right-side vector (©,• - TXJO against all dual 

vectors ni e TI, and selecting the highest resulting product as the optimal solution. 

Unlike the OBS method, where the search through the optimal bases set P stops 

after finding a feasible solution, ODV must check every dual vector n in TI in 

order to guarantee an optimal solution. For this reason, a dual vector counterpart 

to the OBS-RESET option is not possible since primal feasibility cannot be 

determined directly from TI. In other words, an ODV ALGORITHM can only be 

used where a complete dual vector set TI (and associated optimal bases set P) for 

the subset of X has been assembled. 

However, the ODV ALGORITHM may still offer computational advantages 

over either the OSL or OBS-COMPLETE versions for cases where a complete dual 

vector set Hcan be constructed. For a recourse problem with m constraints, each 

basis requires no more than m2 multiplications and m • (m - 1) additions; thus, 

where P contains L bases would (worst case) require L • (2m2 - m) arithmetic 

operations. By contrast, each dual vector requires m multiplications and (m - 1) 

additions, and for TI containing L dual vectors the ODV ALGORITHM requires 

L • (2m -1) operations. Clearly, most cases the OBS algorithm will not realize the 

upper bound on the number of operations due to compact storage for sparse 

matrices; the potential to skip to the next basis upon finding a negative element in 

the current solution vector; and, the ability to stop after finding a feasible basis 
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and not search the remaining elements in set P. However, comparing the ratio of 

the worst case bound for OBS-COMPLETE with the known arithmetic operations 

requirement of ODV shows that the combined effects of the above-mentioned 

items would have to reduce the computational demands of the OBS-COMPLETE 

ALGORITHM by a factor of m on average in order to for it to compete with the 

ODV ALGORITHM. Therefore, the ODV ALGORITHM will most likely outperform 

the OBS-COMPLETE ALGORITHM except for small sets P and 77 with a very skewed 

distribution of the frequency of optimality among the bases in P. 

3.3.6 OBS-Based Results for APL1P 

The APL1P problem's low dimensionality and small probability space 

make it a good candidate for the OBS-COMPLETE ALGORITHM. The major 

difficulty lies in defining the requirements space for to -Tx; again, the range of Tx 

posing the biggest hurdle. By inspection it is clear that x is unbounded from 

above and each element must be greater than 1. However, it is equally clear that a 

practical bound exists based on the upper limits of demand co; indeed, the highest 

possible demand from either supply 1 or 2 would be where all elements oy are 

1200 and only one supply node (1) satisfies the total demand of 3,600 (an event 

whose probability is 6.75xl0"5). Therefore, for this problem the range of x' is 

[1,3600]. 

Another complicating factor concerns the stochastic elements in T. In the 

case of APL1P they have no effect on the range of the requirement space since 

the highest possible multiple in T renders any x' > 3600 meaningless. (By counter 

example, if the highest multiple in T was .5, then x' e [1,7200].) This means that 
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4 independent discrete states for each (ri and £n, and 5 for i;22 results in 1280 

independent possible realizations of the stochastic parameters, or scenarios. 

Obviously a random sampling of these scenarios would provide a faster 

evaluation of Z(x), and the topic is taken up in Chapter 4. However, for the 

search techniques and optimization options discussed in the present chapter all 

1280 scenarios are evaluated (i.e., every Z(x) represents the true expected value of 

the objective function for (3.1a)). 

Using the data provided in Figure 3.1, the OBS-COMPLETE ALGORITHM 

found 13 bases (and associated dual vectors) that thoroughly describe the 

requirements space for APL1P. Table 3.4 provides the search data and 

computational results, and Table 3.5 follows with estimates on the frequency of 

optimality for each basis/dual vector. For these and subsequent results, the 

reported computational times represent the operating system's estimate for the 

CPU time required to execute the algorithm — it does not include system I/O time 

or overhead (IBM 1992). All examples and problems were written and compiled 

in FORTRAN 90, and run on an IBM RS/6000 Model 320 under ALX 3.2. 

Tables 3.6 through 3.8 compare computational times of the three 

optimization options for each of the three search techniques discussed in Sections 

3.2.2 through 3.2.7. Each Table contains two independent search paths, with the 

first entry corresponding to the example search path shown in Figures 3.3, 3.4, 

and 3.6. In all cases the OBS-COMPLETE and ODV options are significantly faster 

than the OSL — enough so that at least an order of magnitude difference in speed 

occurred, thus justifying the upfront cost in finding the optimal basis/dual vector 

set. 
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TABLE 3.4 
OBS-COMPLETE RESULTS FOR APL1P 

Sample Size All Bases / First # Opt. Bases/ 
(oo-Tx) Random # Seed 

873946 
Optimal* Dual Vectors CPU Time (sees) 

1000 All 10 3.81 
5000 4209175 All 11 5.80 

25000 3366149 All 12 29.34 
200000 66231850 First 13 139.55 

* - 'First Optimal' Option Skips Any Remaining Bases After Finding First Feasible, Whereas 'All 
Bases' Checks Every Basis in P for each Sample (oo - Tx) 

TABLE 3.5 
FREQUENCY OF BASIS OPTIMALITY 

(BASED ON 4th RUN FROM TABLE 3.4) 

Basis ID # 12      3       4       5 6 7 8      9 10 11 12 13 

Freq. of Optimality 
Cumulative Freq. 

.19    .18    .12    .11    .10 

.19    .36    .48    .58    .68 
.10 
.78 

.08 

.86 
.06   .04 
.92   .96 

.04 
1.0 

.00 
1.0 

.00 
1.0 

.00 
1.0 

Lowest x Sampled 
Highest x Sampled 

(0.85, 0.00) 
(3596.36, 3561.52) 

* - May Not Add Due to Roundoff Error 

TABLE 3.6 
COMPUTATION TIMES OF OSL/OBS/ODV OPTIONS OF GEOMETRIC SIMPLEX 

ALGORITHM FOR TWENTY SIMPLEX ITERATIONS OF APL1P (IN SECONDS) 

Starting Simplex Parameters OSL         OBS         ODV 
xi = (1529,1625), x2 = (2437,2681), x3 = (2502,3462) 
Random Seed = 440908571, 20 Total Vertices 

274.07       19.77        16.62 

xi = (1529,1625), X2 = (725,718), x3 = (3203,3561) 
Random Seed = 707446, 20 Total Vertices 

171.64       13.53        10.39 

TABLE 3.7 
COMPUTATION TIMES OF OSL/OBS/ODV OPTIONS OF PROJECTED GRADIENT 

ALGORITHM FOR APL1P (IN SECONDS) 

Search Parameters OSL OBS ODV 
xi = (3600, 3600), ß = 6, Iterations = 10 612.22 

807.39 
25.09 
32.31 

23.05 

xi = (2,2), 0 = 8, Iterations = 10 30.29 
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TABLE 3.8 
COMPUTATION TIMES OF OSL/OBS/ODV OPTIONS OF PART AN ALGORITHM FOR 

APL1P (IN SECONDS)  

Search Parameters OSL OBS ODV 

xi = (3600, 3600), 0 = 6, Iterations = 4 340.62 

346.78 

17.48 

17.71 

13.09 

xi = (2,2), ß = 6, Iterations = 4 16.28 
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Chapter 4 

Methodology: Statistical Analysis 

4.1 INTRODUCTION 

Restating (3.1), this dissertation restricts its focus to the class of two-stage 

stochastic linear programming problems with recourse of the form 

MIN Z(x) = ex + E[/i(x,co,T)], s.t. Ax = b, x > 0 (3.1a) 

h(x,(o,T) = MINdy, s.t. Wy = co - Tx, y>0 (3.1b) 

where a finite mean and variance exist for each component of co and T. The 

previous chapter's focus on search techniques and optimization methods falls 

within the traditional framework of solving stochastic recourse problems of the 

form (3.1) by synthesizing previously disparate ideas into a unified and unique 

methodology for solving (3.1a). However, these computational advances merely 

improve upon an existing analytical paradigm without offering additional insight 

into the problem. When viewed from a statistical perspective, though, (3.1a) 

presents a completely different challenge to the analyst and decision-maker. This 

challenge is not simply the complications in finding the optimal solution x* posed 

by the random variables present in co and T (although this is certainly an issue and 

a subject of much research). Instead, the nature of the problem itself is altered in 

the following fundamental way: Any realistic and useful answer to (3.1a) 

becomes less one of strict optimality and more an issue of(l) sensitivity and (2) 
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variability.  This chapter explores this new analytical approach starting with a 

review of the following primary definitions from Chapter 3. 

Definition. Let X = {x : Ax = b, x > 0}. 

Definition Let x* represent the optimal solution that minimizes Z(x); i.e., 

Z(x*) = MIN Z(x). Define the region of optimality as the set {x': 

Z(x') <Z(x*) + e, 6 > 0, x' e X}\ i.e. those feasible solutions x1 whose 

objective values Z(x') are near-optimal (as defined by £). 

Definition. Let zik = cxk + h(xk,(üi,Ti); i.e., zik represents the objective 

value given x^ for the ^realization of to and T. Further define the 

independent random variable z& distributed as cx^ + h(xk,a>,T), where 

E[z*]=Z(X)t). 

The first type of inquiry involves an area of analysis called response 

surface methodology that deals with the shape of the response function Z(x), and 

is motivated by the following observations. First, the traditional optimal answer 

minimizes the first moment of the recourse function, even though x* may have 

undesirable characteristics that near optimal solutions x' may not share. If the 

region of optimality is 'flat', however, then the difference between Z(x*) and Z(x') 

may be small enough to justify eliminating the unwanted attributes of x*. Using 

APL1P as an example, there does indeed exist an optimal answer (x* = 

(1801.9,1571.4), Z(x*) = 24642.3); yet, a quick glance at the figures and data in 

Chapter 3 reveals a region of extremely low sensitivity of Z(x) to changes in x. 
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For instance, in Table 3.2 where x2 = (1394,1969), Z(x2) = 24693.1, a mere .2% 

increase in the expected optimal objective function value occurs for a -22.6% and 

25.3% change in x1 and x2, respectively. Similarly, there exists a (infinitely) large 

number of near-optimal solutions x1 that roughly follow a line of -1 slope running 

through the center of the ellipsoid. Therefore, unless an analyst could claim that 

(3.1) truly captures all relevant objectives and constraints, or that no subjective 

criteria influences the decision-maker, then some measure of solution sensitivity 

becomes necessary. 

Extending this idea, the second — and equally important — aspect of 

sensitivity analysis concerns knowing where not to move. For instance, 

proceeding an equal geometric distance in a direction orthogonal to the vector 

from x* to x2 in APL1P gives x0 = (2199.5, 1979.3) and Z(x0) = 25244.3. This 

produces a 2.44% increase in objective function value (over 11 times as sensitive 

as compared to x2) for a 22.1% and 26.0% change in x1 and x2, respectively. 

Generalizing such an approach, this chapter will show how special canonical 

transformations of the original response surface furnish such minimal and 

maximal ridge analysis for «-dimensional problems, thus providing a very 

important and basic tool for characterizing Z(x). 

Finally, several aspects of the distribution of h(x,(0,T) present another 

major reason why settling for the solution x* can be deceptive. First, although 

Z(x*) by definition provides the minimum expected value, decision-makers are 

often risk-averse — in short, instead of minimizing expected value they may wish 

to avoid the worst-case scenario. (For example, an optimal x* may be less 

desirable than a near-optimal solution x' if VAR[ft(x',co,T)] « VAR[/I(X*,G),T)].) 
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Second, as the literature clearly suggests, the distribution of A(x,co,T) itself is a 

function of x, and may not necessarily follow a symmetric distribution 

(preliminary research found several empirical examples of highly skewed, 

asymmetric distributions). However, any unstated assumptions on the part of the 

decision-maker regarding the distributional form of h(x,(0,T) can be misleading 

when used in conjunction with just E[/i(x,co,T)]. Therefore, non-parametric 

analyses, such as tolerance limits and quantile-based statistics (such as the 

median), can provide very practical information to supplement expected values 

when comparing x' to x*, or for simply understanding the underlying behavior of 

A(x*,a>,T). 

The third aspect of A(x,co,T) — variance — also influences both the search 

techniques discussed in the previous chapter and the validity of the response 

surface approximation of Z(x). This occurs because the tremendously large 

number of scenarios associated with many recourse problems requires a sampling 

of the probability space of CO - Tx, whose corresponding estimates of the expected 

values reduces the accuracy of the experimental design and response surface 

analysis. Under these conditions, variance reduction becomes especially 

important; it not only increases computational efficiency for the search 

techniques, but also reduces the adverse impact of sample variance — which in 

turn improves the accuracy of the polynomial approximation of the response Z(x). 

Although some work has been done on variance reduction in the context of 

improved estimators, the literature does not offer prior research on these two 

important aspects of the problem from the perspective of the decision-maker. 
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This dissertation proceeds from the premise that these two characteristics 

— sensitivity and variance — provide the most important insights into the 

behavior of (3.1a). This chapter presents the techniques used to accomplish these 

two goals under the following topics: Variance Reduction, Experimental Design, 

Response Surface Analysis, and Distribution Analysis. 

4.2 VARIANCE REDUCTION 

4.2.1 Introduction 

When the probability models representing the stochastic elements of CO and 

T contain a large number of discrete realizations, or take a continuous form, then 

an unbiased estimate Zs(x) of the true population mean Z(x) through sampling of 

the population becomes necessary. Recalling the definition of zik, the first 

unbiased estimator of Z(x^) this dissertation uses employs random sampling of 

size I where 

ZRs(xfc) = (/)-1-Iztt. (4.1) 

It follows directly that since ZRS(X^) itself is a random variable, it has a variance 

VAR[ZRs(xfc)] defined as 

VAR[ZRS(X*)] = VAR[(/)-I • I zik] = CO-2 • [ I VAR(za)] = ^f        (4.2) 
i=i «=i 

where an unbiased estimate S^(7) of <s\ can be found using the relation 

S2
k(I) = (M)-i • i [zik - ZRS(Xit)]2 (4.3) 

i=i 
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(Law and Kelton 1991). However, the problem with using the random sample 

estimate ZRS(xfe) for Z(x*) lies precisely with (4.2) — such variability implies 

error. The ramifications of estimator variance on the search process have already 

been addressed (e.g., Barton and Ivey (1991) and the false convergence of the 

GEOMETRIC SIMPLEX ALGORITHM); however, estimator variability can also 

profoundly affect the accuracy and validity of the response surface estimates. For 

example, if a single point estimator ZRS(xfc) lying in the 'flat' region of near- 

optimality as part of an experimental design underestimates the true response 

Z(Xfc), then the resulting polynomial approximation could easily assume the 

surface curves downward in the direction represented by the errant design point. 

This in turn would produce a response surface shape resembling a saddle where 

the true shape is known to be convex (see Box and Draper 1987). 

As the name implies, variance reduction techniques (VRTs) attack this 

problem by trying to reduce the value of (4.2) in an efficient manner. Obviously, 

the sample variance can be decreased by increasing the sample size I, but this 

becomes computationally prohibitive for large recourse problems. The preferred 

approach reduces sample variance with the same /, or equivalently gives (4.2) the 

same magnitude with fewer simulations. There are a wide variety of VRTs; Law 

and Kelton (1991) provide an excellent description of the major VRT categories, 

and suggest secondary references Nelson (1987) and Wilson (1984) for more 

comprehensive reviews. However, as noted in Chapter 2 the application of VRTs 

to the recourse problem in the literature remains limited, requiring much 

additional work on both increased individual point estimator efficiency and its 
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larger effects on response surface approximation. This research contributes to this 

area by exploring two areas of VRTs: Control Variates and Latin Hypercube. 

4.2.2 Control Variates 

In very general terms, most VRTs attempt to reduce the sample variance 

by correlating some internal aspect of the simulation to the response being 

estimated. For instance, Common Random Numbers (CRNs) compare alternative 

configurations under the same random number stream; Antithetic Variables (AVs) 

use complementary random numbers under the assumption that the opposing pairs 

are negatively correlated; and, Conditioning Estimation (CE) employs known 

analytical values in lieu of estimates where possible (Law and Kelton 1991). For 

reducing the sample variance in the recourse context, Control Variates (CVs) is an 

attractive technique for the reasons outlined in Law and Kelton (1991): 

1. Correlation.  Contrary to CRN and AV methods, CVs work with either 

positive or negative correlation. 

2. Simplicity. CVs do not require separate runs like CRNs, or synchronized 

replication like AVs. 

3. Effectiveness. If any correlation exists between a control variate and z^, 

then CVs will reduce the sample variance. 

4. Efficiency.    Using internal CVs does not appreciably increase the 

computational requirements of the simulation. 
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Finally — and most importantly — this dissertation contends that the recourse 

problem presents an evident set of random variables that strongly support CVs as 

an effective and efficient VRT candidate. 

Following Law and Kelton's (1991) presentation, CVs assume that a 

random variable X with a known expectation E[X] is correlated (positively or 

negatively) with the simulation response Y, where E[Y] is unknown and thus 

estimated. Intuitively, if during a simulated observation X is greater than E[X], 

then the resulting response Y should also be greater (positive correlation) or lesser 

(negative correlation) than E[Y] and adjusted accordingly. This relationship can 

be expressed mathematically as 

Yc = Y - b(X - E[X]) (4.4) 

where Yc represents the controlled, unbiased estimator for E[Y]; and, b is a 

constant whose sign corresponds to the correlation between Y and X, and whose 

value quantifies the adjustment. Taking the variance of (4.4) gives 

VAR[YC] = VAR[Y] + £2
VAR[X] - 2fcCov[Y;X] (4.5) 

from which it immediately follows that VAR[YC] < VAR[Y] if and only if 

2bCov[Y;X] > b2VAR[X] . (4.6) 

Regarding VAR[YC] as a function of b and setting its derivative to zero gives 

,    Cov[Y;X] >,~ 
b ~ VAR[X] ^■') 
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whose substitution for b in (4.5) yields 

VAR[YC*] = (1 - P2
YX) • VAR[Y] (4.8) 

or the minimum variance adjusted estimator Ycv*> where pyx is the correlation 

between Y and X. From (4.8) it follows that if Y and X are at all correlated then 

VAR[YCV*] < VAR[Y]; and, the higher the correlation the greater the variance 

reduction (Law and Kelton 1991; also see Kleijnen 1974, Lavenberg and Welch 

1981, Nelson 1987, and Nelson 1990). 

The relationship described in (4.4) is present in the recourse problem (3.1) 

by observing that the estimator z^ should be correlated with one or more of the 

random components of GO and T. 

Definition. Define the P-dimensional vector v whose elements VP, 

p = 1,... , P, represent selected components of CO or T with known E[v/>] 

and VAR[VP]. 

Definition. Let \U> = E[vP] and define the P-dimensional vector [I = 

[|ll,H2,...^P]. 

Definition. LetC=^^. 

The previous definitions allow for an unbiased minimum adjusted estimator for 

the 0 realization of VP 

hk = ^ik-b*yP{yp
i-\\P), (4.9) 

where the unbiased CV estimator of Z(x^) is 
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Zcv(x*) = (/)-!• i z*k (4.10) 
i=\ 

and where VAR[ZCV(X*)] < VAR[2RS(X*)] (Law and Kelton 1991). While clearly a 

correlation almost certainly exists between z,* and the random variables in a> and 

T, which stochastic element — or combination of elements — in co and T 

provides the greatest variance reduction as a control variate is not at all apparent. 

Answering this question raises the following issues of CV selection, bias, and 

non-stationarity. 

4.2.2.1 Control Variate Selection 

Following Lavenberg and Welch (1981), all previous scalar CV 

formulations can be extended to include multiple CVs; i.e., replacing \P with the 

vector of controls v gives 

4 = z,*-&*(vf-|i) (4.11) 

where 

a^Ovz-Fv]-1. (4-12) 

Ey is the covariance matrix for v, avz is the covariance vector for v and z,*, the 

elements of the P -dimensional vector v,- are the i& realization of the random 

variable v?, p = 1, ... , P, and the elements of the vector by characterize the 

optimum coefficients for maximum variance reduction. However, in so doing the 

loss factor 
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T^i <4-13) 

occurs due the estimation requirements of (4.12) discussed shortly (Lavenberg 

and Welch 1981; also see Law and Kelton 1991, and Rubenstein and Marcus 

1985). 

While (4.13) encourages a parsimonious selection of multivariate CVs, it 

still does not decide which random variables in G) or Tx to select. This research 

addresses these topics in the following manner. For VP select a component of co or 

T assumed to be most closely correlated to z# based on empirical observations 

from search results, preliminary screening designs, or subjective knowledge of the 

underlying system. Reduce the loss factor described in (4.13) and minimize the 

computational requirements implicit in estimating (4.12) by letting P < 3. This 

heuristic follows the findings of Rubenstein and Marcus (1985) suggesting that 

too large a P can over-correct the controlled estimator. 

4.2.2.2 Bias Estimators 

While VAR[y] is known, CovARtz^v/7] is not (the same holds true for Ey 

and cvz, respectively, in the multiple CV case); therefore, the covariance 

relationship must be estimated. Unfortunately, such estimation creates a biased 

estimator of Z(x) as Law and Kelton (1991) show in the scalar case. Substituting 

the estimator byp for byp in (4.9), where 

^,> = CovAR[zit;v/>] (4.14) 

gives the estimator for CovAR[zfcVP] as 
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CtovAR[z*;vP] = (/ -1)"1 • i(zik - Z(x*))(vf - j>) (4.15) 
i=l 

by letting $J> (the sample estimate for \\P) be defined as 

j> =(/)-! -Ivf. (4.16) 

In turn, this gives the new observation as 

z; = z*-^vp(v?-u/>). (4.17) 

Consequently %k,i= 1, ••• , A are no longer independent since they all contain 

£*p. Therefore, expectations cannot be taken across (4.17) in the same manner as 

for (4.9) (Law and Kelton 1991). 

Like its scalar counterpart by must also be estimated, and therefore its 

estimator will also be biased for the same reasons. Following Lavenberg, 

Moeller, and Welch (1982) a biased estimate associated with by follows from 

using the multiple CV version of (4.14), 

£ = Övz • PvH (4-18) V 

where Ey is the sample covariance matrix whose qp& component (rows indexed 

on q = 1,... , P, and columns indexed onp = 1,... , P) is 

if = (/ -1)"1 • I (v? - v*)(vf - fb) (4.19) 

and v? represents the sample estimate for V7 
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J yq  =(7)-l-Xvf. (4.20) 

Similarly, the sample covariance vector frVzuses the relation 

<z = (/ -1)"1 • I (za - Z,(x^))(vf - jtf») (4.21) 

to estimate cvz (Lavenberg, Moeller, and Welch 1982). One alternative to 

eliminating biased estimators due to dependent estimates of bwP (4.14) or by (4.18) 

with zt would be to estimate £v/> or by using separate data; however, that would 

increase the number of samples for x*. Instead, a more efficient approach uses 

jackknifing (or generalized splitting) (Kleijnen 1974; Lavenberg, Moeller, and 

Welch 1982; and, Miller 1974). 

This research implements a simple jackknife estimate using the following 

procedure as described by Lavenberg, Moeller, and Welch (1982). 

Definition. Let Z(x*) = (7)1 • I zik. 

I 
Definition. Let v = (7)1 • £ v,-. 

1 1 P P Definition. Let the set Jk = {z^, ... ,zIk; vu, ... ,vIk; ... ;vu, ... ,vIk} 

represent all observations of z,& and v,vt, i = 1, • • • , / for x*. 

Temporarily dropping the k subscript for convenience, the biased estimator for 

Z(x) becomes 

Z(x) = Z(x)-^(v-^v). (4.22) 
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Partitioning the / observations of set / into G sets of equal length H such that 

/ = GH, let index g denote the set of observations 

z«i    vgi 

iv*-\ Zg2 ylgl 

<   ZgH    VgH 

*"< 

^ f,g=l,...,G (4.23) 

^»J 

where, if {xi,\i} c /, {z/,v/} c 7, and i * Z, thenfz;,^} n {z/,v/} = 0. LetZg(x) 

represent an estimator of Z(x) using the same formulation of (4.22) without 

{zg,vg}; i.e.,Zg(x) estimates Z(x) using all observations from / except the subset 

{zg,Vg}. Similarly, let ft* represent the estimator by calculated from all the data 
o 

in / except {zg,vg} using (4.18). Then G distinct estimates of Z(x) can be found 

using the relationship 

$g = GTix) - (G-l)Zg(x), (4.24) 

where <j)g represents a weighted adjusted estimate based on how much Zg(x) 

deviates from Z(x) 

$g = G-[Z(x)-Zg(x)] + Zg(x), 

which in turn gives the reduced-bias jackknifed estimator of Z(x) 

ZG(X) = (G)-1- Xfe 
g=i 

(Lavenberg, Moeller, and Welch 1982; also see Nelson 1990). 

(4.25) 

(4.26) 
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Using the jackknifed estimator raises several implementation issues. First, 

one must decide how to partition / to balance the computation requirements of 

(4.26) against the need for a lower-bias estimator. Kleijnen (1974) reports that 

Tocher (1963) shows that for G = 2 the variance of (4.26) is twice that for ZcV(x) 

using a non-stochastic b*v in (4.22), and therefore suggests G > 2 as a technique 

for reducing it. Although both Kleijnen (1974) and Miller (1974) suggest using G 

= / and H = 1 as the best jackknife grouping, such a configuration would be 

computationally expensive. As a compromise, this research will assign H = 10 

and / > 50. Second, since 2V is known from the model's distributional 

assumptions, one could skip estimating £y, particularly since the assumption of 

independence of the elements in co and T renders the off-diagonal elements in Ey 

zero. However, following Kleijnen (1974) and Nelson (1990), all elements of the 

sample covariance matrix %, will be estimated from the sample data in Z using 

(4.19-20), even though Ey is known. (This implies that the off-diagonal elements 

of %, * 0 due to sampling error.) Finally, Lavenberg, Moeller, and Welch (1982) 

also observe that (4.26) does not require any distributional assumptions; hence, 

the jackknife procedure will work for any continuous or discrete distributions in co 

andT. 

4.2.2.3 Non-Stationarity 

Adding the k subscript back, a stationary by is unlikely over all values of x 

because of the changes xk imposes on (3.1b) through Tx. Therefore, by should be 
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re-estimated for each x* independently from other points during a search 

technique or experimental design. 

4.2.3 Latin Hypercube 

4.2.3.1 General Description 

Employing Latin Hypercube (LH) sampling as a method for variance 

reduction was suggested by Wilson (1995) based on his recent research in 

stochastic activity networks. LH uses an extended stratified sampling structure 

proven by McKay, Conover, and Beckman (1979) to guarantee that for any 

estimator of the mean response Y associated with the random variable Y, where 

the equivalent LH estimator is YLH, Y =ßx), and x' (a component of x) represents 

a random variable, VAR|YLH] ^ VAR[Y] if Y is a monotonic function for each x» 

in x. Since the objective value changes as a monotonic function of any right-side 

value of any inequality constraint, it immediately follows that VAR[ZLH(XIC)] < 

VAR[Z,Rs(xk)J for the class of problems represented by (3.1). 

Further motivation for investigating LH variance reduction in the recourse 

context comes from McKay, Conover, and Beckman: 

One advantage of the Latin hypercube sample appears when the output 
Y(t) is dominated by only a few of the components of X. This method 
insures that each of those components is represented in a fully stratified 
manner, no matter which components might turn out to be important 
(McKay, Conover, and Beckman 1979, 240). 

This dominance characteristic concurs with the CV assumption of high correlation 

between one or more elements of (co - Tx) and zik. Second, subsequent empirical 
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results by Avramidis (1992), Avramidis and Wilson (1995), McKay, Conover, 

and Beckman (1979), and Stein (1987) found LHs provide considerable variance 

reduction in a variety of simulation environments. Third, McKay, Conover, and 

Beckman (1979) show that E&Ln(xk)] = Z(xk); i.e., the LH estimator is unbiased 

and thus does not need any compensating adjustments (e.g., the jackknifing 

procedures of CVs). Finally, unlike CVs, LHs have the advantage of not 

requiring a priori knowledge of a random variable with known correlation to the 

response. Thus, LHs would be especially useful in the initial search for the region 

of optimality, as well as during the experimental design phase. 

The LH approach falls under the Correlation Induction category of VRTs. 

Like antithetic variates (AVs), LHs attempt to induce a negative correlation 

between two or more responses such that the variance of the averaged responses is 

less than that of a randomly sampled estimator. Beginning with the next set of 

definitions (and dropping the k subscript again for convenience), the 

accompanying explanation of the LH method for the recourse problem follows the 

description of the general case provided by Avramidis and Wilson (1995). 

Definition.   In general, let lJw represent the joint distribution of T 

independent variables. 

Definition.   In general, let the T-variate distribution DCI possess the 

following properties: 

1.        Each univariate marginal distribution of Da follows a uniform 

(0,1) interval. 
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2. Every bivariate marginal distributions is negative quadratic 

dependent (NQD); i.e., for any bivariate random vector {BhB2) in 

DT
CIthen PROB{BJ <b1,B2<b2}< PROB{BJ < bj}-PROB{B2 <b2}. 

3. All bivariate marginal distributions of Da equal each other. 

Definition. Let R represent the number of random variables in T and CO. 

Definition. Let Utr represent a random variate drawn on the unit interval 

(0,1) for the random column vector U'r, where r = 1, ... ,R, and t = 1,... , 

T. This implies generating the actual random variables in the recourse 

problem by using unit interval variates Utr as inputs (e.g., inverse 

transformations for continuous variables). The elements U'r also represent 

intervals (or stratum) of equal probability with respect to the original 

distribution of the random variable represented by the column vector U'r. 

Definition. Define the i& sample matrix £/,- to consist of the column 

vectors [Z/*1, Iff, ... , U't
R] or equivalently the row vectors [l/-\ Ut\ ... , 

u?l 

Definition. Let zit represent the value for ex + ft(x,c%,T;,) for the sample 

row vector of random variates U* from U{. 

Definition. Define the function /(3.i)(l7**) to represent the value of ex + 

h(x,(dit,Tit) in (3.1) using the random variables CO - Tx derived from the 

input variates U*; i.e., zit =/(3.i)(tf/)- 
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The general form of a correlation induction sample U{ is 

'  U?     Uf 

Ui=< 
uf   u? 

v u?   uj2 

u IR  ^ 

2R u: 

u™ , 

(4.27) 

where the column vectors U'r fall into two mutually exclusive sets — one group 

following distribution DT
CI while the other conforms to jJlD (and where the second 

set of column vectors U'r with distribution DJD can be empty). This structure 

guarantees that the estimators zit, t = 1, ... , T derived from the row vectors Uf- 

will be negatively correlated since (4.27) provides dependent rows Ut' (hence 

dependent zit) under the NQD property of D^v At the same time, it also insures 

the column vectors U.'r independence through the random marginal univariate 

sampling of the unit interval (0,1) (Avramidis and Wilson 1995). 

An examination of antithetic variates (AVs) by Avramidis and Wilson 

(1995) provides an easy example of how (4.27) works. AVs form a special case 

of (4.27) where T= 2; Ulr,r= 1,... ,R, are randomly and independently sampled 

from a uniform distribution (0,1); and, lßr = (1 - Ulr), r=l,...,R. This gives 

Ui = 
U, li 12 

l-U 
11 

u 

\-uf 

u IR 

\-u\ \R 
(4.28) 

where z,;i =f(3.i)(U1'), la =/(3.i)(^2*)» and dependence exists between J71* and Iß' 

through the relationship U2r = (1 - Ulr)- Furthermore, the random sampling of 
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Ulr, in conjunction with lßr = (1 - Ulr), meets the criteria of the distribution DCI. 

Hence, the column vectors U'r are both independent and provide a negative 

correlation between z,i and ZQ (Avramidis and Wilson 1995). For sample I/,-, the 

antithetic estimate of Z(x) for / sample size is 

ZAV(x) = (/)-!• I zu (4.29) 

where 

Zjl + za 
2     ' (4.30) 

and has variance 

VAR[ZAV(X)] = VAR[zi1] + VAR[zd + 2COVAR[zfl;^ (4 31) 

If z,-i and z,2 were independent CovARtzi^z^] = 0 andZAV(x) = ZRS(x); however, 

since monotonicity guarantees that z,-i and z,-2 are negatively correlated, 

CovAR[zii;zi2\ < 0 and VAR[ZAV(X)] < VAR[ZRS(X)] (Law and Kelton 1991). 

Returning to Avramidis and Wilson (1995), LH sampling implements the 

structure of (4.27) and its supporting assumptions using the relation 

7tr(t) -l + U%> 
Utr= T  (4.32) 

under the following definitions. 
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Definition. Where the ordering of the set of integers {1, ... , T) has T\ 

permutations, let the function #,-(•), r = 1, ... , R, represent a random 

sample (with replacement) of that set of permutations. Furthermore, 

define itr{t) as the 0 element in the r& random permutation. 

Definition. Let lf[D be an independent random sample of the unit interval 

(0,1) for t= 1,..., T, and r = 1,..., R. 

Note that the elements of the column vectors U'r represent a uniformly stratified 

sample of size T randomly ordered by the permutation ^(«). Within each stratum 

an independent sampling of the unit interval (0,1) is taken, while the permutation 

function Kr{*) insures that every stratum is represented once in each column 

vector. Consequently, (4.32) describes a distribution Ua, since each univariate 

marginal distribution follows a uniform (0,1) interval; and, every bivariate 

marginal distribution is both NQD and equivalent to any other bivariate marginal 

distribution. Furthermore, since both lrfD and Kr{») are independent, the column 

vectors U'r are independent as well. Therefore, by previous definitions (4.32) 

provides a negative correlation for row vectors W by providing one or more 

independent column vectors U'r with distribution DT
CI (Avramidis and Wilson 

1995). 

4.2.3.2 Discrete Random Variables 

Since the problems examined by this research model the stochastic 

elements of CO and T with discrete distributions, the LH assumption of continuous 

variates in (4.32) must be adjusted. McKay (1988) suggests such a modification 

111 



by allocating the discrete values of the random variable \P proportionally to their 

probabilities within its associated column vector U'r. 

Definition. Let the random variable vP take on D discrete realizations wd, 

d = 1, ... , D. Furthermore, let if denote its associated column vector in 

U( for the 0 sample vf, and its dimension T represent the stratification size 

of Ui. 

D 
Definition. Let pd = PROBIVP = v/d], where £ pd = 1. 

Since the exact allocation of any wd (pd-T) will most likely be non-integer, it can 

be partitioned into its integer and fractional components 

pd-T = Im(pd-T) + fd (4.33) 

such that each wd of \P will have at least lNT(pd-T) elements in tfp for each 

sample / of size T. It follows directly that 

T= |lNT(pd-r)+Ifrf (4.34) 
d=\ d=\ 

and since both T and Im(pd-T)) are integer 

FP = I U (4.35) 
d=\ 

is also an integer representing the remaining slots in U7 that can be filled by 

additional v/d beyond their guaranteed quota of lm(pd-T) (McKay 1988). 
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McKay's method introduces the column vector independence of U? first 

by randomly sampling on the unit interval (0,1) & times and allocating the 

additional w^ based on the proportion 

h- (4-36) 

where 

11=1. (4-37) 
d=itP 

The resulting selection of size T using Jm(pd-T) and the random sampling just 

discussed is then independently ordered within the column vector U.'p using the 

permutation function 7Cp(T). This process repeats for each LH sample i,i= 1,... , 

I, by which wd will appear on average in U7 according to the frequency 

described by (4.33) (McKay 1988). Also note that U.rt of Ut in the discrete 

context represents the actual random variable, instead of a random variate drawn 

on the unit interval requiring (usually) an inverse transformation. 

This section completes its description of the LH technique with an 

example Ut for APL1P. Setting the sample size T = 10, TABLE 4.1 gives the 

INT(P^-T), f^, frf/Fp, and associated assigned portions of the unit interval for the 

three different discrete distributions followed by £ and <ü. Figure 4.1 gives a 

sample Ut based on the parameters in TABLE 4.1; a random selection of two 

additional realizations for a/J = 1, 2, 3, which are (1100,1000), (1100,1000), and 

(1100,1200), respectively; and, the random permutation function 7t(T). 
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TABLE 4.1 
LH/MCKAY DISTRIBUTION OF APL1P STOCHASTIC PARAMETERS FOR T= 10 

1^        Proportion of 
VP wd     PROB{vP = wd}   iNT(p^-r)      U        yP (0,l)Itvl. 

1.0 
.9 
.5 
.1 

.2 

.3 

.4 

.1 

2 
3 
4 
1 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 
1.0 .1 1 .0 .0 — 

.9 .2 2 .0 .0 — 

%2 .7 .5 5 .0 .0 — 

.1 .1 1 .0 .0 — 

.0 .1 1 .0 .0 — 

900 .15 1 .5 .25 .0 - .25 

of 1000 .45 4 .5 .25 .25+ - .5 
1100 .25 2 .5 .25 .5+ - .75 
1200 .15 1 .5 .25 .75+-1.0 

U'Z1 w& U'COl U'COl U-co3 

U0, .5 .7 1000 900 900 

l/i- 1.0 .1 1000 1100 1200 

IP' .5 .7 900 1000 1100 

U3' .9 1.0 1100 1000 1000 

UA' 1.0 .9 1000 1000 1000 

u* .5 .7 1000 1100 1000 

C/6- .1 .9 1100 1200 1200 

IP' .5 .0 1100 1100 1100 

l/s- .9 .7 1200 1000 1100 

IP' .9 .7 1000 1000 1000 

Figure 4.1. Sample Ut LH Matrix (T = 10) 

114 



4.2.4 Example Variance Reduction Results 

Table 4.2 and Figure 4.2 provide variance reduction results for APL1P 

using CV, LH, and random sampling (RS) methods. Since the search techniques 

and response surface procedure use a single estimate Z(x^) for each x*, this 

example compares the accuracy of the sample estimators and magnitude of the 

sample variance under the following definitions. 

Definition. Where Z^x*) represents an unbiased estimator for Z(Xfc) as 

previously defined for sample size / using sampling technique s e 

{RS,CV,LH}, let Zs(xk)n be the n& unbiased estimate independently 

sampled from any other estimate of Z(Xfc). 

Since Zs(xk)n itself is a random variable let 

Zs(xk)N=(N)A- lUxtin (4-38) 

represent the mean for N independent sample estimates of Z(x^) using sampling 

technique s, while 

s2s(xk)N = (iV-l)-i • I (Z,(x*)n - Z(*k)N)2 (4-39) 

defines the sample variance of the estimator Z,y(x^. These definitions parallel 

the previous formulations (4.1) and (4.3) for a single estimator Zs(xfc) of Z(xk), 

except that here the variance of interest is the one associated with the estimator 

itself. Justification for such a comparison follows directly from the fact that as an 
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unbiased estimate of Z(xk), anyZ^x*) drawn from the sampling technique with 

the smallest s2
s(xk) will — on average — be closer to Z(x^) thanZf(x^), t * s (see 

Law and Kelton 1991). 

For comparison purposes in APL1P the random sample and control variate 

estimators ZRS(XJO„ and Zcv(x*)« use a sample size / = 50. The CVs use Jj1, £2, 

and co1 as the control variates with a jackknife partition G = 5 and H = 10. 

Lacking a preliminary screening design, these controls are selected based on the 

direct influence of i;1 and £2 on the amount of resource x1 and x2, while adding CO1 

due to its association with the highest recourse cost coefficients. (Adjusting 

previous notation, let Zcv(x^)„ = 7c(xk)n', i-e., the CV designation assumes the 

jackknifed adjustment.) The Latin Hypercube estimator ZLH(xfc)„ uses a 

stratification size T = 50 as well, equivalently giving it the same sample size as 

RS and CV. For vectors xk, k = 1,..., 5, ten independent estimators Z^x*)« (s e 

{RS,CV,LH}, N = 10) provide the basis for calculating Zs(xk)N and s2
s(xk)N. 

The results in Table 4.2 show a dramatic reduction in the variance of the 

estimator for both CVs and LHs, although in general LHs gave both the lowest 

variance and the most accurate estimate of Z(x*) (with the exception of CVs for x 

= (2700,2700)). Similarly, Figure 4.2 graphically demonstrates the LH (and to a 

lesser extent the CV) estimates varying far less than their RS counterparts about a 

more accurate assessment of Z(x) by plotting the individual Zy(xjt)M used to 

calculate Table 4.2 against Z(x^) and their respective Zs(xk)N. Indeed, these plots 

can be thought of as sample distributions of the various estimation techniques s e 

{RS,CV,LH}, for N = 10, and Z^Xjt) as a single sample. From inspecting Figure 
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TABLE 4.2 
COMPARISON OF ESTIMATOR ACCURACY AND VARIANCE FOR 

RS, CV, ANDLH SAMPLING TECI 1NIQUES FOR AP LIP (7=50, fi /=10) 

Xfc Z(x) ZRS 
-2     * 
SZRS Zcv -2      * SZCV %t ZLH 

-2     * %t 

(1800,1800) 24689 25065 623 24875 44 .93 24677 15 .98 

(900,900) 26425 26989 229 26795 49 .79 26450 6 .98 

(900,2700) 25131 25646 856 25424 38 .96 25123 6 .99 

(2700,900) 25299 25806 826 25395 51 .94 25309 12 .99 

(2700,2700) 27499 27576 342 27552 35 .90 27618 61 .82 

* - in thousands   t - % variance reduction from RS 

30000 

29000 

28000 

27000 

26000 

25000 

24000 

23000 

— I 
4- 

Pi t» > a 
9*üä 
PH 

PH <Z> >  ffi 

PH 

PI C/3 > ffi 

PH 

PH co > in 

PH 

PH C/3  >  ffi 
P  PH  63 
PH 

(1800,1800)     (900,900)      (900,2700)    (2700,900)    (2700,2700) 

Figure 4.2. Scatterplot of %(Xk)n [•] andZs(x*)Ar [-] for 
Population, RS, CV, and LH Sampling Techniques 
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4.2 and knowing the true mean Z(Xjt), LH sampling clearly stands out as the most 

accurate method. 

Figure 4.2 also gives the most powerful evidence of how the variability of 

ZRs(X)t)n can badly mislead either the search or the response surface 

approximation. For instance, examining a near optimal solution x = (1800,1800) 

finds one extreme of ZRS(xjt) = 26186 while the other extreme is 23449 (the true 

population mean, Z(x = (1800,1800)) = 24689, is designated POP). Most 

importantly, both results are far more likely to occur as ZRs(xk) samples than 

either ZCv(Xk) orZuj(xk)for estimates ofZ(x). Furthermore, the consequences of 

such error becomes obvious given Z(x*) = 24642 and the 'flatness' of the region of 

optimality. If either estimate had been used in a search technique, it would have 

misdirected the process in a region sensitive to sampling errors. Similarly, in the 

context of a response surface design, had the lower estimate constituted a non- 

central design point the regression would assume the objective function value for 

(1800,1800) was lower than the presumed optimal centerpoint and fitted the 

appropriate — but incorrect — non-convex saddle surface. 

4.3 EXPERIMENTAL DESIGN 

4.3.1 Introduction 

Once the search process has found one or more optimal (or near-optimal) 

solutions, the next step requires deriving a polynomial approximation of the 

response Z(x) to changes in x. Since no two problems will exhibit the same 

response characteristics, this dissertation cannot give precise guidance on issues 

associated with constructing the design (i.e., factor selection, factor ranges, and 
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type of design) used to calculate the response approximation; nor can it turn to the 

stochastic programming literature for help since this idea has not been tried before 

in the context of linear programming with recourse. Therefore, this section will 

present a general approach for constructing designs as applied to (3.1a) based on 

the experimental design and simulation literature, and leave the details to the 

specifics of the problem. 

Instead of constructing a design to derive the response surface, one 

possibility would be to simply estimate a regression model based on the data 

collected by the search process. However, such an unstructured procedure would 

not provide as good an approximation as a more formal experimental design for 

several reasons. Quoting Law and Kelton 

In simulation, experimental design provides a way of deciding before the 
runs are made which particular configurations to simulate so that the 
desired information can be obtained with the least amount of simulating. 
Carefully designed experiments are much more efficient than a "hit-or- 
miss" sequence of runs in which we simply try a number of alternative 
configurations unsystematically to see what happens (Law and Kelton 
1991, 657). 

A better approach would treat the search data as a type of reconnaissance 

information that gives us much-needed insight into the basic behavior of the 

recourse problem and provides guidance on how to structure the formal 

experimental design. Specifically, this preliminary information directs the 

centering of the design based upon the location of the optimal solution; and, 

through its rudimentary knowledge of the relationship between x and Z(x), 

restricts the design (and associated response surface) to the region of optimality. 

By using this two-step method (preliminary screening and experimental design) 
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one can easily assess the accuracy of the resulting polynomial approximation 

using the characteristics of the specific type of design in conjunction with the 

known convexity of Z(x). 

Although the topic of experimental design encompasses an immense 

literature (Steinberg and Hunter 1984), this research focuses on its application 

within the realm of simulation. Law and Kelton (1991) cite three specific 

advantages simulation experiments have over their physical or industrial 

counterparts: 

1. Control. Unlike a physical environment, simulation experiments control 

the level or value of the input factors. In the recourse context, this means 

the first-stage decision vector x. 

2. Variability. Controlling the source of variability — the random number 

generators — allows for the application of the VRTs explained in the 

previous section. 

3. Randomization. Unlike physical environments, where systematic error 

requires repeated experiments under the same input values (termed 

replications), a single estimate of sufficient sample size for each set of 

input factors will suffice (Law and Kelton 1991). 

These advantages in turn lead to designs whose estimates of the polynomial 

parameters are both relatively simple to calculate and highly efficient (Box and 

Draper 1987). 
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This section will introduce the experimental designs used for this research 

by first reviewing its terminology and assumptions, then presenting the type of 

designs used to derive the response surfaces, and concluding with a simple 

example for APL1P. Topics dealing specifically with response surface estimation 

are deferred until Section 4.4. 

4.3.2 Terminology and Assumptions 

This dissertation uses the following terminology from the experimental 

design literature as applied in the context of the recourse problem. 

Definition. Let k index a partition of size K of the decision vector x e X 

such that x = [xi, ... , x* ... , x* I x*+1, ... , x^.ia)Y = [xK I xK>Y (note 

that k no longer refers to a vector x* in the context of the search sequence). 

Definition. Let the term factor be synonymous with xk,k= 1, ... , K in 

xK. The subset of factors XK constitutes an assumption of which variables 

in x significantly influence Z(x). Since the non-factors x*+1,... , xn(3-la> in 

XJC are held constant, the experimental design consists solely of changes 

in the factor values as inputs, with Zs(x) as the output (or response). 

Definition. The literature refers to levels as the values of the factors, 

which in (3.1a) corresponds to the value for x* > 0. N-level designs refer 

to the number of N levels each factor is restricted to having in the 

experimental design. This research uses only two-level designs 

(disregarding center point and axial values), and in keeping with 
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conventional notation designates the lowest value for xk as '-' and the 

highest as'+'. 

Definition. Center point refers to the intermediate or average value of xk, 

and is represented as '0'; by extension, the centerpoint of the experimental 

design for x# is '0'. 

Definition. Design point refers to a specific combination of factor levels 

for XK. 

Definition. Axial point denotes a design point whose factor levels are all 

center points '0' except for xk = ±ak, where ak is greater than the value for 

xk represented by'+' (and by symmetry -ak < '-')• 

Definition. Response refers to the output of the simulation — in this case 

the estimator %{x) for Z(x). The response surface approximation V(x) 

refers to a second-order polynomial approximation 

K K  K 
V(xK) = % + I äifcX* + I I äyx'x/ (4.40) 

for a specified range of x#, where Z(x) = V(xK) + e(xK), and e(xK) is error 

due to random variability and lack of fit. 

Definition. Replication refers to a single simulation and its associated 

response at a given design point. In the recourse context, the estimator 

Zs(x) for the sampling technique s e {RS,CV,LH} represents a single 

replication for the design point defined by the factor levels of xK. 
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Definition. Letting rk represent the absolute value of the difference 

between the high value '+' and low value '-' for xk, and ck the value of the 

center point for \k, the coded value xc for x* is 

k   xk-ck 

By this definition, the coded values for the two-level design points are +1 

and -1, the center points 0, and the axial points ak > 1, -a* < -1. 

With these basic definitions, the literature consists of a wide variety of 

experimental design structures (Central Composite, Box-Behnken, Mixture, 

Plackett-Burman, to name a few) that provide their associated response surface 

approximations with different degrees of higher order interactions, confounding, 

coefficient variance, response variance, and orthogonality. This dissertation 

restricts its investigation to a widely used design — the central composite (CC) 

design — as the principal method (with variations) for deriving the polynomial 

approximations of Z(x) (Box, Hunter, and Hunter 1978, Diamond 1989, Kleijnen 

1987, Law and Kelton 1991, Lorenzen and Anderson 1993, or Montgomery 

1984). 

4.3.3 Central Composite Design 

Following Montgomery (1984), the CC design represents a very popular 

design for fitting second-order models, and contains three basic components — a 

'core' 2K factorial or fractional design, IK axial points and I%K centerpoints. 
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1. Factorial Design. The 2K factorial design consists of all combinations of 

factor levels for a two-level design; graphically, it would represent the four 

corner points of a square for 2 variables, the eight corner points of a cube 

for 3 variables, etc. A 2K-p fractional design consists of a subset of the 

full factorial design (minus 2P design points), and is referred to as a 1/2P 

fractional design (discussed in more detail below). 

2. Axial Points. Continuing with the geometric analogy, the axial points 

represent design points projected through the center of each side of the 

hypercube. Mathematically stated, the sets of axial points would be {±al, 

0,... , 0}, {0, ±a2,0,... , 0},... , {0, 0,..., ±a*}, and for a CC design of 

K factors constitutes 2K design points. 

3. Center Points. The center points represent nx replications of the design 

point {0,0,... ,0}. 

This configuration provides the three minimum levels for each factor necessary to 

estimate a quadratic model, and depending on the selection of the values for ak 

and HK gives the response approximation the following characteristics. 

1. Rotatable. The variance of the predicted response V(x#) varies only with 

distance — and not the direction — from the centerpoint. The value of a 

determines this attribute of the design. 
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2. Orthogonal. This condition occurs whenever the off-diagonal elements of 

XTX are zero, and is a function of the value of «#. In the CC design 

context it minimizes the variance of the regression coefficients äy. 

3. Uniform Precision. Under this property, controlled by the size of nK, the 

variance of the response V(x^) is consistent throughout the hypercube 

defined by the factorial design points. Note that the value of nK for a 

uniform precision design can differ from that for an orthogonal one. 

Another often cited characteristic of CC designs observes that they can be built up 

from simpler first-order designs that use just the factorial portion (Montgomery 

1984). However, given the known convexity of Z(x) this research assumes that a 

positive definite quadratic approximation will always be required in the region of 

optimality, and therefore will proceed directly with some version of a CC design. 

Resolution, another important concept associated with experimental 

designs, measures the level of factor interaction the polynomial approximation 

can independently determine. Recalling the definition of the 2K-p fractional as a 

subset of the full factorial design minus 2P design points, the design resolution 

denotes the level of confounding between certain factor interactions that occurs in 

fractional designs. In the context of problem (3.1), for example, this means that if 

both interactions xSxh and x'x/'xfc significantly affect Z(x), certain fractional 

designs could not discern one effect from the other. 

Definition.    Define the resolution level R (denoted using Roman 

numerals) as one where every r-factor interaction can be independently 
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determined from any other factor interaction containing less than R - r 

factors (Box, Hunter, and Hunter (1978). 

Using the previous example, as two-level and three-level interactions, 

respectively, xSxh and x'x/x* confounding implies no greater than a resolution V 

fractional design since the difference of the design level (5) and interaction level 

of the first factor set (2) is not less than the level of the second factor set (3). By 

contrast, for a resolution V design main factor effects are not confounded with 

two-way interactions (5-1=4, which is greater than 2), nor would two-way 

interactions be confounded with other two-way interactions (5-2 = 3, which is 

still greater than 2). Note that only the full 2K factorial design provides complete 

factor interaction estimates. (Also see Box and Hunter 1961.) 

One problem associated with the CC design stems from the exponential 

growth in the factorial portion that occurs with an increase in the number of input 

factors K. For smaller problems (such as APL1P, CEP1, PGP2 and even 4TERM) 

such growth is manageable; however, for larger problems (e.g. 20TERM) a full 

factorial CC design can not be accomplished and analyzed in a reasonable period 

of time. For example, 20TERM requires 263 « 9.223-1018 runs just for the full 

factorial portion of the design. Consequently, this research employs two basic 

tactics to reduce the CC design to a manageable level for the larger problems — 

preliminary screening ana fractional factorial designs. 

126 



4.3.3.1 Preliminary Screening 

As explained by Box and Draper (1987) the orthogonal (or near- 

orthogonal) property available through CC designs provides far more precise 

estimates of ay that give smaller, but more inclusive, individual and joint 

confidence regions of the regression coefficients. For this reason alone a 

regression based on the data collected from the search process would not provide 

as accurate a polynomial approximation. However, the optimal search process 

can provide preliminary information to assist the development of the CC design in 

varying degrees, depending upon the size of (3.1). 

First, for all problems the search technique provides an optimal solution 

that determines the center point of the design. Centering the design around an 

optimal solution gives two principal advantages: 

1. Region of Optimality. The purpose of the response surface analysis is to 

find a second-order polynomial approximation of the optimum 

neighborhood, which will often be just a small portion of X. Centering the 

design guarantees that the regression approximates the correct area of 

interest. 

2. Convexity. The literature gives this analysis the advantage of knowing the 

true surface of Z(x) to be convex, which implies that the fitted polynomial 

should also be convex. Therefore, centering the design on a 'side' of the 

surface (instead of the 'bottom') — in conjunction with Zj(x) error, the 

'flatness' and shape of Z(x), and the design resolution — increases the risk 
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of the regression fitting a saddle surface. (Box and Draper (1987) give an 

excellent discussion of this phenomenon in Chapter 11.) 

For these reasons, design location is very crucial; therefore, analysis of the search 

data complements the 'traditional', more formal screening designs used in the 

experimental literature (e.g., Plackett and Burman 1946). Such designs would not 

be appropriate without some knowledge of the optimal solution; and, in any case 

would be difficult to construct given the size of X. 

Another reason for using the optimal search data in a preliminary analysis 

concerns the range of the experimental design factors xK. Since the purpose of the 

response analysis is to approximate the region of optimality, the design does not 

need to stretch over the entire set X. (Indeed, such a fit would strain the 

assumption of a quadratic approximation for Z(x).) For smaller problems, 

determining the range (i.e., the actual values for xk denoted by '-' and '+') presents 

no challenge. However, bigger problems will most likely require a formal 

screening design process. 

Highly fractionated designs of resolution III and IV present one method 

for determining the composition and factor ranges of xK using data from the 

optimal search process. According to Box, Hunter, and Hunter (1978) the 

Plackett-Burman designs (1946) offer a way to determine the main effects of K 

factors in N = K + 1 runs, where iV is a multiple of 4. Similarly, for N as a power 

of 2, resolution III designs can also-be built for K = N -1 factors in N runs by 

saturating a 2d factorial design, where d = ln(AT)/ln(2). If a resolution IV design is 

needed (i.e., main effects not aliased with two-way interactions), then afoldover 
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of a resolution III design (where the resolution III design is replicated with the '-' 

and '+' design points reversed and then added to the original design) gives such a 

design for IN runs (Box, Hunter, and Hunter 1978). Assuming Z(x) contains no 

complicated higher-order interactions, resolution IV designs should adequately 

characterize xK. Finally, note that these designs only estimate linear effects. They 

are equivalent to the 'core' factorial portion of a CC design, and thus do not 

include axial or center points. 

Finally, group screening offers another approach for removing non- 

important factors before building a CC design. Kleijnen (1987) describes this 

method where individual factors are consolidated into groups and subsequently 

treated as a single factor in the screening design. If any ensuing group effect is 

inconsequential, then all the factors in such a group are assumed insignificant. 

4.3.3.2 Fractional Factorial Designs 

Once the subset of influential factors x# has been set, the next step 

requires estimating the second-order polynomial equation. Assuming that no 

third-order or higher interactions occur (which is equivalent to the fundamental 

assumption this thesis makes regarding the adequacy of a quadratic 

approximation), fractional CC designs provide another obvious method for 

reducing the size of the experiment. However, adequately estimating a quadratic 

function with the assurance of no confounding of the two-way interactions with 

each other requires at least a resolution V design (Box and Draper 1987). 

Whitwell and Morbey (1961) note that resolution V designs require a minimum 

[1 + K(K + l)/2] factorial design; when combined with 2K axial points and nK 
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center points, such designs should handle up to K = 25 first stage variables. 

Assuming that a reasonable reduction from the original x occurs in the 

preliminary screening phase, resolution V designs will be adequate for most 

problems. 

For situations where K > 25, resolution III* designs provide another way 

of estimating a quadratic polynomial. As described by Draper and Lin (1990), 

resolution IE* designs essentially use the axial points of a CC design to de-alias 

the confounding effects between the one-way and two-way interactions of the 

factorial portion (also see Hartley 1959). Their article also shows how resolution 

IE* designs can be derived from resolution V designs. 

4.3.4 Example Experimental Design 

As a small problem, APL1P does not require either a preliminary 

screening design or a fractional factorial design. Table 4.3 gives the CC design 

for APL1P, while Figure 4.3 shows the design superimposed on the contour chart 

for APL1P. Table 4.4 gives the regression results derived from the SAS analysis 

for both coded and uncoded variable inputs. Finally, because these results 

represent the population means (hence no variance) the design includes only one 

center point sample. (Note that this experimental design provides the contour 

representation of Z(x) presented throughout Chapters 3 and 4 (e.g., Figure 4.3). 

Although technically incorrect since several of them exceed the design region, the 

contours are nonetheless used for illustrative purposes.) 
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TABLE 4.3 
CENTRAL COMPOSITE DESIGN FOR APL1P 

Uncoded xjc Coded XK Response 

xl X2 xl X2 Z(x) 

1000 770 -1 -1 26580.3 

1000 2370 -1 +1 24862.3 

2600 770 +1 -1 25286.7 

2600 2370 +1 +1 26622.1 

669 1570 -1.414 0 25489.3 

2931 1570 +1.414 0 26166.5 

1800 439 0 -1.414 26183.3 

1800 2701 0 +1.414 25760.9 

1800 1570 0 0 24642.6 

TABLE 4.4 
REGRESSION RESULTS FOR CC DESIGN IN TABLE 4.3 

Analysis of Variance 

Source DF Sum of Squares Mean Square R Square 

Model 5 4061687 812337 .9894 

Error 3 43673 14558 

Total 8 4105360 

Parameter Estimates 

Variable Coded Par. Est. Uncod. Par. Est. 

Intercept 24643.0 33276.0 

xl 180.0 -4.8969 

x2 -122.5 -5.4860 

X1 • X2 763.3 0.0012 

(x1)2 577.1 0.0009 

(x2)2 649.2 0.0010 
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Figure 4.3. Central Composite Experimental Design for APL1P 
(Coded Variable Designation) 

4.4 RESPONSE SURFACE ANALYSIS 

4.4.1 Introduction 

The application of response surface methodology (RSM) to the two-stage 

stochastic linear programming problem with recourse represents one of this 

dissertation's major contributions to this area of research. Specifically, this thesis 

adopts Box and Draper's (1987) advocacy of examining the type and nature of 
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factor dependence, a term they use to describe a response function characteristic 

where its reaction to one factor is not independent of the other factor levels. Such 

factor interaction typically generates a ridge system of responses that can take on 

various shapes and levels of stationarity, symmetry, and attenuation. This type of 

response analysis provides the best insight on the reaction of the response to 

changes in the input variables for the following reasons: 

1. Alternative Optima. A range of alternative optimal solutions often can be 

found along a maxima or minima ridge, where changes in one input 

variable can be compensated by changes in another with no loss of 

optimality. The direction of the ridge measures this exchange ratio, and 

therefore may find more suitable solutions in practical or subjective terms. 

2. Optimization of Second Response. Superimposing a second response on 

the original plot allows for selecting a point along the ridge that optimizes 

the second response. 

3. Direction oflnsensitivity. Essentially an extension of item (1), the ridge 

can also give an attenuation direction that minimizes departures from the 

optimal solution. 

4. Yield Improvement. For rising ridge systems, this analysis gives an 

improving direction. 
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5. Underlying Mechanism. Factor dependence can supplement the analyst's 

or decision-maker's knowledge of the underlying mechanisms of the 

problem (Box and Draper 1987). 

Items (1), (3), and (5) promise to be the most advantageous in the context of the 

recourse problem (3.1). Secondary response surfaces in item (2) are not 

investigated, and item (4) should not occur if the experimental design is properly 

centered. Additionally, this research will also emphasize the opposite aspect of 

item (3); i.e., where not to go by finding the direction of maximum sensitivity. 

Obviously, for higher-dimensional problems such analysis requires an 

algebraic description of the ridge. Box and Draper (1987) describe the technique 

of canonical analysis (CA) as one method of providing such a description. (In an 

appendix they also review an alternative analytical method referred to as ridge 

analysis by A. Hoerl (1959) and R. Hoerl (1985), which essentially functions as a 

steepest ascent technique for second-order surfaces. This dissertation does not 

employ this type of analysis, and its use of the term 'ridge analysis' refers to 

identifying the minima and maxima ridge by way of canonical analysis of the 

response surface advocated by Box and Draper (1987)). The outline of the CA 

method in the following sections follows the one provided by Box and Draper 

(1987) based on the two models they present — the 'A' and 'B' canonical forms. 

Additionally, this study demonstrates the application of these methods to APL1P. 

134 



4.4.2 A Canonical Form 

Adapting Box and Draper's (1987) presentation to the recourse problem, 

describing the coefficients of (4.40) in the matrix forms 

xK = 

rxi-| ai 

X2 
a = 

h 
,     A = 

-X*- -*K- 

an   i/2ai2 

i/2äi2      hi mh.K 

L  mz\K ll2a2K •••      a^-J 

(4.42) 

allows the fitted second-order response surface approximation of Z(x) to be 

V(X£) =h + %a + X£Ax£. (4.43) 

(Recall that the experimental design uses a subset of first-stage decision variables 

\K of size K, where x = [xK I x^-]T 6 X.) Letting A* and mk represent the 

eigenvalue and eigenvector, respectively, for A for k = 1,... , K, then 

Am* = nMA (4.44) 

Where each eigenvector is normalized (i.e., (mfc)T-m* = 1), the matrix M consists 

of mk, k = 1,... , K as its column vectors. Letting A be a diagonal matrix whose 

elements Akk are %k, k = 1,..., K, gives 

AM = MA. (4.45) 

Since M is an orthonormal matrix MT = M"1 and MMT = I; consequently, 

multiplying (4.45) with MT produces 
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MTAM = A, (4-46) 

and, using the second identity with the associative property, rewrites (4.43) as 

V(xjf) =% + (x*M)(MTa) + (x^M)MTAM(MrXif). (4.47) 

Defining X = MrxK and 9 = IVFa restates (4.47) as 

VA(X) = ao + X^e + XTAX (4.48) 

or equivalently 

vA(X) = äo +1 e*x* +1 xk(xk)2 (4-49) 
fc=l fc=l 

where 9 = [91, ... , 9*]T, X = [X*, ... , X*]T, VA(X) represents the response 

approximation for the transformed vector X, and by previous definitions 

VA(MTx^) = W(xK). Thus, the linear transformation (4.48) forms the A canonical 

configuration where essentially an axis rotation eliminates the cross-product terms 

in the original response approximation. Furthermore, as explained in more detail 

shortly, the eigenvalues %k indicate the type of surface (4.40) fits, the eigenvectors 

M* denote the component contribution of the original axes to the rotated ones, and 

9* measures the slope of the rotated axes from the origin of the original coordinate 

system. Finally, setting the derivative of (4.49) with respect to Xk to zero 

produces 

Xk = — (4.50) 
s    2%k 
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which defines the stationary (minimum) point with respect to the rotated axes 

(Box and Draper 1987). 

Using the coded parameter estimates from Table 4.4, an A canonical 

analysis for APL1P produces 

a = 
179.994" 

-122.495 
and A = 

577.082 381.670" 

381.670 649.194 
(4.51) 

which in turn gives 

M = 
.7396 .6370" 

-.6370 .7396 
, A = 

229.769  0.000' 

0.000 996.507 
9 = 

214.089' 

29.195 
(4.52) 

the linear transformation 

VA(X) = 24643 + 214.09X1 + 29.19X2 + 229.8(Xi)2 + 996.5(X2)2,  (4.53) 

and the stationary points in the rotated coordinates as 

yi    -214.09 - 
Xs- 2-229.8 -"-4658 and Y2     -29.19 

As " 2-996.5 = -.0146.    (4.54) 

Figure 4.4 illustrates the A canonical analysis of APL1P. Since the coded 

variables' axes (not shown) center around the optimal solution xo = (1800,1570), 

so do the rotated axes X1 and X2 indicated by the solid lines. The axes X1 and 

X2 displayed by the dashed lines and centered about the stationary point Xs 

concern the B canonical analysis discussed shortly. 
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Figure 4.4. A and B Canonical Analysis for APL1P 

Most importantly, the canonical transformations of (4.51-54) can provide 

an algebraic description compatible with the graphical depiction of Figure 4.4. 

Again, adapting Box and Draper's (1987) general description of canonical analysis 

to the recourse problem shows 
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1. Eigenvalues. The eigenvalues Xk measure the degree of slope in the 

transformed coordinate system X, while the signs indicate the type of 

contour surface (i.e., concave, convex, rising, saddle, etc.). Since the 

literature has shown Z(x) is either a convex (minimization) or concave 

(maximization) function of x, X must be either strictly positive 

(minimization) or strictly negative (maximization). Thus the eigenvalues 

can not tell only the relative sensitivity of the fitted response VA(X) to 

movement along the rotated axes, but can also confirm the validity of the 

fit through their signs in the context of the recourse problem. In the case 

of APL1P, both eigenvalues are significant, although curvature along the 

rotated X2 (996.5) axis is four times as steep as that of X1 (229.8). 

2. Eigenvectors. The normalized eigenvectors of M describe the component 

contribution of the original x^ axes to the rotated axes X through the 

relationship X = MTxK. In practical terms, this means the elements of the 

eigenvectors provide the basis for estimating the factor dependence — or 

tradeoffs — of the decision variables xK. For instance, in the case of 

APL1P a roughly equal presence of both decision variables x1 and x2 — 

(.7396,-.6730) and (.6730,.7396), respectively — indicate an approximate 

45° rotation of the fitted quadratic surface to the original decision 

variables x. 

3. Slope. The variable Qk measures the slope of the fitted response in the 

direction of the rotated axis Xk.  For APL1P X1 has a far higher linear 
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coefficient than X2. In conjunction with the stronger curvature of X2, this 

indicates that, while VA(X) is less sensitive to changes in X1 than in X2, 

there does not exist a stationary ridge through the entire design region. 

4.        Stationarity.   The distance D of the design origin to the estimated 

stationary (minimum) point is 

Z>=|X(Xj)2f (4.55) 

and provides a measure of how close the optimum point of the fitted 

response VA(X) is to the center of the experimental design x* or x' (Box 

and Draper 1987). In the case of APL1P D = [(-.4658)2 + (-.0146)2]1/2 = 

.466, as seen in Figure 4.4. 

For closely located stationary points and design centers, a second canonical form 

— the B Canonical Analysis — can further simplify the polynomial 

approximation (4.53) by centering the rotated axes X around the stationary point 

Xs. 

4.4.3 B Canonical Form 

Box and Draper (1987) suggest employing the B canonical analysis 

whenever the experimental design and stationary point of the fitted surface are 

approximately the same (i.e., the fitted surface closely approximates the true 

response), and suggest D < 1 as a benchmark. This transformation occurs using 

the relationship 
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-2AXS = 9 (4.56) 

which gives the fitted response 

Z(XS) = ao + l/2Xs'e. (4.57) 

Defining X* as 

X* = X*-X* (4.58) 

and its corresponding vectorX = [X1,... , X*]T produces the B canonical form of 

(4.48) 

VS(X) = Z(XS) + XAX (4.59) 

and of (4.49) 

Vß(X) = Z(XS) + | Xkfrk)2 (4-60) 
fc=i 

where VB(X - X^) = VA(X) (Box and Draper 1987).  For the example problem 

APL1P, the B canonical form becomes 

Vß(X) = 24543 + 229.8(X!)2 + 996.5(X2)2 (4.61) 

as indicated by the dashed lines in Figure 4.4. 

4.4.4 Ridge Analysis 

The final aspect of RSM employed by this dissertation provides the best 

insight into the recourse problem — the direction of minimum and maximum 
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sensitivity of the fitted response \(xK) to changes in xK. Again paraphrasing Box 

and Draper (1987), the idea starts with the assumption that for the fitted response 

there exists p eigenvalues whose small values imply a /^-dimensional ridge. 

Indexing the eigenvalues from largest to smallest gives X = pi1, ... , XK
-P, X

K
-P

+
\ 

... , XKY and their respective rotated axes X = [X1, ... , XK
-P, X

K
-P

+1
, ... , X*]T. 

The distance DR from the design centerpoint to the ridge is then 

[K-p     .   "11/2 
DR=   X(X*)2 (4-62) 

and the coordinates of the rotated system nearest the ridge are Xs = [X,,,..., Xs 
p, 

0, ... , 0]T. Proceeding from Xs and moving exactly one unit in either direction of 

X^ provides three sample responses 

(1)Z(XS),     (2)Z(Xs) + e* + ?i*,   and(3)Z(Xs)-e^ + ^, (4.63) 

whose average and sample variance are 

Z(XS) + 2/3-X* (4.64) 

and 

(9*)2 + l/3-(^)2, (4.65) 

respectively. Since the standard deviation of a normal distribution can be 

estimated with three samples using the relationship 

sampling range (4.66) 
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the approximate sample range rK for Xs in the direction of the rotated axis X* 

within the CC portion of the experimental design is 

r*= [3(9*)2 + (kK?]m (4.67) 

(Box and Draper 1987). 

Applying (4.67) to APL1P produces 

r1 = [3-(214.09)2 + (229.8)2]1/2 = 436.25 (4.68) 

forX1, and 

r2 = [3-(29.19)2 + (996.5)2]1/2 = 997.78 (4.69) 

for X2. Results (4.68-69) algebraically confirm what Figure 4.4 shows as the 

minimum sensitivity to be along the rotated X1 axis, and to expect a Z(x) of no 

more than 24643 + 436 = 25079 within plus or minus one unit distance from Xs. 

Equally important, these results show that movement along the X2 axis provides 

the worst deviation from the optimal solution, and thus should be avoided. Since 

the original design center point essentially lies on the X1 axis, the analysis can 

effectively conclude that near-optimal solutions lie on a ridge defined by the 

relation 

x = (1800,1570) + p-(.7396,-.6730); p e [-1082.+1082]. (4.70) 

This relationship can be presented to the decision-maker — in even simpler terms 

— to provide the basic insight into the problem solution. 

143 



APL1P Response Analysis Summary. A near-optimal solution requires 

(1) a total combined investment of 3370 for x1 and x2; (2) a one-for-one 

tradeoff between x1 and x2 starting at (1800,1570); and (3) neither xl < 

1000. Generally speaking, the total amount of installed capacity is more 

important than how it is split between the generators. 

4.5 DISTRIBUTION ANALYSIS 

4.5.1 Introduction 

McKay (1992) cites two primary questions asked about the uncertainty of 

the output of any simulation model: 'What Influences It?' and 'How Large?'. The 

previous section shows how RSM answers the first question regarding which 

decision variables affect the response and by how much. Typically, such analysis 

also presents the decision-maker with a range of multiple optimal or near-multiple 

optimal solutions due to the 'flatness' of the region of optimality, thus allowing the 

use of subjective criteria and individual judgment not captured in the original 

model. However, for stochastic linear programming problems, McKay's second 

question remains unanswered. Until now, both the literature and this dissertation 

focus on the expected value of the recourse function (3.1b), assuming it to be the 

primary decision criteria (in conjunction with known first-stage costs). Instead, 

this dissertation contends most decision-makers want a range of possible 

outcomes based on their decision — not just an average. This thesis also contends 

that such knowledge will narrow the choice of solution in near-optimal situations 

by comparing of the range of possible outcomes for each x and selecting the one 

with the smallest variance, best worst-case scenario, best best-case scenario, or 
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some other criteria.   In effect, it introduces the underlying distribution as a 

decision criteria for two-stage stochastic linear programming problems with 

recourse. 

Incorporating the variability of ft(x,G),T) in the modeling process 

represents this dissertation's other major contribution to this area of research. This 

section inaugurates this topic by reviewing its distributional features, then 

outlining the measures of uncertainty used to characterize it. It closes the chapter 

by applying its techniques on the example problem APL1P and proposing a final 

solution recommendation. 

4.5.2 Distributional Characteristics 

Deciding which measure of uncertainty to employ depends upon the 

attributes (or assumptions) regarding the underlying distribution. Redesignating 

the k subscript to denote a distinct solution x*, recall the definition of z,* as the 

optimal value of the recourse function (3.1b) plus ex* for the 0 realization of co 

and T; and, the random variable zk distributed as ex* + h(xk,(0,T), where E[z^] = 

Z(x*). Since the distribution of zk is a function of x, its form and parameters will 

vary throughout the feasible region X, and must be estimated for larger problems. 

In the case of smaller problems where the population distribution can be 

determined for x*, then statistical estimation is not required. Most importantly, it 

is very unlikely that zk will follow a unimodal or symmetric distribution. 

Empirical evidence from APL1P suggest this asymmetry occurs even for 

the simplest problems. Using the same x* points from Table 4.2, Table 4.5 lists 
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TABLE 4.5 
DISTRIBUTION PARAMETERS FOR VRT SAMPLES IN TABLE 4.2 FOR APLIP 

Xfc zjfc = Z(xjt) Median i\ S. D. ofzfc Minzfc Max Zfc 

(1800,1800) 24689.1 26160.0 4808.2 18270.0 45990.0 

(900,900) 26425.4 27705.0 3553.5 17550.0 40995.0 

(900,2700) 25131.3 25265.0 5207.5 18720.0 45495.0 

(2700,900) 25299.3 25072.0 5282.0 19170.0 46485.0 

(2700,2700) 27499.3 27210.0 4070.5 23670.0 50985.0 

the population mean, median, and standard deviation; and, the lowest and highest 

possible values for zk. The differences in the mean and median of zk suggest 

varying degrees of symmetry of the underlying distribution, while the differences 

in standard deviations indicate differences in dispersion as well. This lack of 

symmetry does not, of course, mean that standard statistical analysis techniques 

employing the central limit theorem, such as confidence interval estimation 

regarding %{s), do not apply. Furthermore, the literature does not suggest that zk 

itself is normally distributed, or should even follow a symmetric distribution. It 

does mean, however, that any assumptions made by the decision-maker regarding 

the distributional form of zk can be misleading. 

Figures 4.4 and 4.5 graphically show the advantages of more accurate 

distributional analysis, and illustrate the skewed nature of zk, by comparing 

population histograms for the points (1800,1800) and (2700,2700), respectively, 

to normal distributions with the same mean, variance, and area (based on a 

presentation idea by Bradley 1968). Both samples share — in varying degrees — 
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Figure 4.5. Comparison of Population Distribution of (1800,1800) in APL1P 
to Normal Distribution with Same Mean, Variance, and Area 

a heavily skewed dispersal favoring the area just below the average, an attenuated 

trimodal shape, and a significant presence of high-cost solutions far above what 

occurs in the upper tail of a normal distribution. Clearly, any assessment using 

normal or symmetric assumptions on the part of the decision-maker would not be 

appropriate in either case — such presuppositions would overstate the frequency 

of low-cost solutions while understating the high ones. Additionally, for non- 

symmetric distributions in general, the variance of z^ does not adequately 

characterize its coverage (McKay 1992). 
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Figure 4.6. Comparison of Population Distribution of (2700,2700) in APL1P 
to Normal Distribution with Same Mean, Variance, and Area 

Although difficult to predict in its exact form, intuitively it is not 

surprising that the distribution of z^ possesses such characteristics. As an 

optimization function, it would shift bases to minimize changing resource 

demands in ©,• - T,xjt, thus mitigating somewhat their effects on the cost. 

Furthermore, marginal increases in ©, - TjX* over (Oj - T/x* (/' *■ 0 may occur in 

slack resources that would have no effect in increasing the solution value z,* from 

zjk; thus, the 'bunching' effect observed in Figures 4.5 and 4.6. Consequently, 

higher values of z^ should occur disproportionately fewer times than the 

distribution of the elements in CO and T would suggest. 
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Based on empirical evidence as seen in Figures 4.5 and 4.6, and in 

additional preliminary research, this dissertation contends that non-parametric, or 

distribution-free, statistical analysis presents an excellent option for analyzing the 

range of coverage of z* for reasons of simplicity, computational efficiency, and 

minimal assumptions of the underlying distribution (see Bradley 1968). 

Consequently, following Wilson's (1995) suggestion, this research investigates the 

distribution of h(x,(0,T) by employing tolerance limits as the basic measure of 

interest for z*. As a non-parametric statistic, it possesses characteristics that make 

its application appealing in the context of the stochastic recourse problem. More 

importantly, it provides the necessary information about the dispersal of z&; and, 

in conjunction with the response surface approximation of Z(x), gives the 

decision-maker a truly useful description of the stochastic behavior of (3.1). 

4.5.3 Tolerance Limits 

Quoting Conover 

... confidence intervals ... provide interval estimates for unknown 
population parameters, such as the unknown probability p or the unknown 
quantile xp, and a certain probability 1 - a (confidence coefficient) that the 
unknown parameter is within the interval. Tolerance limits differ from 
confidence intervals in that tolerance limits provide an interval within 
which at least a proportion q of the population [emphasis added] lies, with 
probability 1 - a or more that the stated interval does indeed "contain" the 
proportion q of the population (Conover 1980,117). 

Thus, by estimating the population range tolerance limits provide a measure of 

'coverage' for asymmetrical distributions that convey a useful characterization of 
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the distribution of zk to the decision-maker. Adapting Conover's (1980) notation 

and terminology to the recourse context gives the following definitions. 

Definition. Let z, represent ex + h(x,®i,Ti) for the fo. realization of a 

random sample of CO and T, i = 1,..., / (again, dropping the k subscript for 

convenience). 

Definition. Let the parameters r and m, where r<m, index the ordered 

sample zi < ... < zr < ... < zm < z/, and 1 < r < m < I. Furthermore, let 

zo = -°° and zj+i = +°°. 

Conover describes the tolerance interval approach as determining the sample size 

/ such that for a probability of at least 1 - a no less than a q portion of the 

population lies between zr and zI+m.], where q, r, m, and a are predetermined. 

Note that this formulation allows either one sided tolerance limits (r or m equals 

zero) or a two-sided tolerance intervals (r and m not equal to zero), and can be 

approximated with the relationship 

where %i_a is the (1 - q) quantile of a chi-squared distribution based on 2-(r + m) 

degrees of freedom (Conover 1980). 

Examining (4.71) shows that the required sample size increases the most 

for higher proportions of the coverage percentage q, and less so for increases in 

the confidence level a and indices r and m.  Striking a balance between these 
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factors and the computational requirements of sampling /i(x,<D,T), this dissertation 

will set r = 1 and m = 1, q = .05, and a = .01, giving a sample size / = 130. Note 

that this sample size does not depend upon the distribution's form or size, and thus 

can be applied for any stochastic recourse problem. 

4.5.4 Example Distribution Analysis 

Demonstrating the tolerance limits method on APL1P, Table 4.6 shows 

the results for five equidistant x* taken along the minima ridge defined by (4.70). 

First, note that the probability coverage meets or exceeds 95% for all points 

except (1000,2298), which falls slightly below the targeted proportion q. Second, 

in general the tolerance limits provide a very good approximation of the range for 

both individual estimates of Xk and comparisons across the ridge. For instance, 

the tolerance limits' upward trend of the estimated maximum z* with respect to 

increases in p matches the actual upward trend of the population maximum. 

Third, both the tolerance limits and Z(x) tend to favor the minima ridge from the 

optimal point to the stationary point Xs of the response surface approximation. 

Fourth, there does exists a difference between the population extremes and those 

found by tolerance limit sampling. However, the purpose of tolerance limits is to 

estimate the range we can expect z* to fall into for a q portion of the time — not 

to provide point estimators. Finally, Figures 4.7 and 4.8 graphically compare the 

tolerance limits data in Table 4.6 to the distribution of zk for the two best sampled 

points with respect to Z(x) (i.e., (1400,1934) and (1800,1570)). 
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TABLE 4.6 
TOLERANCE LIMITS FOR APL1P MINIMA RIDGE (RANDOM SEED = 674303674) 

p x* Z(x) Mdn. Zfc 
Popul 

Minzfc 
ation 
Maxz£ 

Tol. Limit 
Min Z£  Max z# % Cvg. 

-1082 {1000,2298} 24828 25493 17915 44795 19193 38727 .9493 

-541 {1400,1934} 24689 26285 17805 45105 18405 40364 .9864 

0 {1800,1570} 24642 26075 17695 45415 18695 41002 .9610 

541 {2200,1206} 24801 25415 18185 45725 18535 41725 .9861 

1082 {2600,842} 25230 25093 18675 46035 18925 43035 .9921 

P(zfc) 
0.06-i 

0.05 

0.04 

0.03- 

0.02 

0.01 

Z(x)Median 

0-1—,—.—,—TJ-T—r 
10000 18000 

I I ~ 

26000 34000 42000 
1 r Zk 

Figure 4.7. Comparison of Tolerance Limits to Population Distribution, 
Mean, and Median for (1400,1934) in APL1P 
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P(zj 
0.06 

0.05 

0.04 

0.03 

0.02- 

0.01 

Z(x) Median 

—i 1 1 r     i     r 
10000 18000 26000 34000 

1 **' "i     "i r ^ 
42000 

Figure 4.8. Comparison of Tolerance Limits to Population Distribution, 
Mean, and Median for (1800,1570) in APL1P 

These sample points indicate that x* = (1400,1934) offers a lower range of 

possible Zk values without sacrificing much of its expected value. Based on these 

results, the distributional analysis suggests restricting the final choice by 

modifying (4.70) to be 

x = (1400,1934) + p-(.7396,-.6730), p e [0,541], (4.72) 

and presenting to the decision-maker the following guidance. 

APL1P Distributional Analysis Summary. A near-optimal solution 

requires (1) a total combined investment of 3350 ± 20 for x; and, (2) a 
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one-for-one exchange between x1 and x2 starting at (1400,1934) and 

ending at (1800,1570). Furthermore, as the solution moves away from 

(1400,1934) expect a tradeoff between slightly lowering the expected cost 

and marginally increasing the expense of the worst-case scenario. 

Finally, it should be noted that using distribution-free statistics like 

tolerance limits does not diminish either the utility of basing the response surface 

on Z(x). First — and most significantly — both the search techniques and the 

response surface analysis fundamentally depend on the convexity of Z(x). Thus, 

changing the search and approximation criteria away from Z(x) poses significant 

challenges that are beyond the scope of this research. Second, intuitively it 

appears likely that the range of z# will be a function of x; for example, the lowest 

maximum value of z* for the entire set X will probably occur somewhere in or 

near the region of optimal or near-optimal solutions. Therefore, using x* or x' as a 

starting point for the response surface and distributional analysis can still be 

justified. Finally, this research wants to supplement the use of Z(x), not replace 

it; consequently, distributional analysis presents a natural and obvious method for 

providing the decision-maker with additional insight into stochastic linear 

programming problems with recourse. 
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Chapter 5 

Problem Set Analysis 

5.1 INTRODUCTION 

This chapter demonstrates the response surface analysis approach outlined 

in Chapters 3 and 4 on the set of problems listed in Table 5.1. The subsequent 

sections each cover a single problem by providing a brief formulation and 

description followed by an analysis similar in structure and content to the one 

presented for APL1P (deviations from the prescribed algorithms are noted as 

well). These problems have also been independently solved (Morton 1994c), thus 

providing a benchmark for confirming the optimal solutions. Table 5.1 also 

shows which optimization and analysis techniques from Chapters 3 and 4 are used 

for each problem. 

As in the case of APL1P, the computational environment consists of an 

IBM RS/6000 Model 320 running under ADC 3.2 and FORTRAN 90 for the OBS 

and RSA programs, while SAS Version 6.08 running on Open VAX/VMS 

provides the response surface analysis. As before, all timing results are based on 

AIX's estimate of CPU code execution, and do not include system overhead or I/O 

requirements. The code also requires linking to IBM's OSL and IMSL libraries. 

Finally, due to the size of some problems this chapter depicts only the relevant 

portions of the formulation. 
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TABLE 5.1 
APPLICATION SUMMARY OF OPTIMIZATION AND STATISTICAL ANALYSIS TECHNIQUES 

APL1P 
Problem Set Descrip 

PGP2          CEPl 
Hion 
4TERM 

15 
3/15 

28 /146 
8 

256 

4TERM 

20TERM 

# of x Variables 
Rows/Columns in A 
Rows/Columns in W 

# of Random Variables in co/T 
# of Scenarios 

2 
2/2 
5/9 

5 
1280 

4 
2/4 
7/16 

3 
576 

4 
9/8 
7/15 

3 
216 

Optimization 
CEPl 

63 
3/63 

124/764 
40 

1.0951012 

APL1P PGP2 20TERM 

Geometric Simplex 
Projected Gradient 

PARTAN 
OSL 

OBS-COMPLETE / ODV 
OBS-RESET 

Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 

Yes 

Yes 

Yes 

APL1P PGP2 
Statistical Analys 

CEPl 
Yes 
Yes 
Yes 

Yes 

'is 
4TERM 

Yes 
Yes 
Yes 

Yes 

Yes 
Yes 
Yes 

20TERM 

Control Variates 
Latin Hypercube 

Population^ 
Full Exper. Design 

Fractional Exper. Design 
Prelim. Screening Design 

Resp. Surf. (Minima Ridge) 
Resp. Surf. (Maxima Ridge) 

Tolerance Limits 

Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 

Yes* 
Yes 

Yes 
Yes 

Yes 
Yes 

t - 'Population' implies all scenarios evaluated for validation of VRTs and Tol. Limits. 
Additionally, true expected values used in experimental design when available. 
$ - Used only for comparison with LHs; NOT used for reported response surface estimates. 

5.2 PGP2 

5.2.1 PGP2 Problem Description 

PGP2 represents a power generation expansion problem developed by 

Louveaux and Smeers (1988) and modified for use by the University of Michigan 

FTP site (Holmes 1995). Figure 5.1 on the following page gives its formulation, 

whose recourse configuration contains the transportation problem structure found 
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in many capacity expansion problems. One difference from APL1P lies with the 

first-stage constraints; in PGP2's case, Ax = b includes both a minimum supply 

capacity and a first-stage capital improvement budget constraint. PGP2 also 

limits its source of variability to the right-side vector CO of the recourse problem, 

whose discrete representation allows for 576 possible demand scenarios. Finally, 

the recourse error vectors TJ (with objective coefficient values of 1,000) ensure 

feasibility for all possible values of x and co. 

5.2.2 PGP2 Optimization Results 

The OBS algorithm found 32 optimal bases and their respective dual 

vectors for PGP2 (Table 5.2), with a frequency of occurrence listed in Table 5.3. 

The OBS-COMPLETE algorithm subsequently found one additional basis during the 

line search portion of the PART AN search. The frequency distribution of the 

optimal basis set for PGP2 shows less concentration of optimality than seen with 

APL1P; e.g., 92% of optimality occurs under bases #1 through #8 for APL1P 

versus 74% for PGP2. This greater dispersion, combined with the larger number 

of dual vectors, results in the OBS-COMPLETE and ODV algorithms turning in 

comparable computation times for all three search techniques (Table 5.4). Both 

options turn in performance times an order of magnitude better than OSL alone. 

Due to the relatively small number of scenarios in PGP2, all search 

algorithms calculate the exact value of Z(x) for this problem. In turn, this lack of 

experimental error most likely causes the GEOMETRIC SIMPLEX ALGORITHM to 
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TABLE 5.2 
OBS-COMPLETE RESULTS FOR PGP2 

Sample Size 
(co-Tx) Random # Seed 

All Bases / First 
Optimal* 

# Opt. Bases/ 
Dual Vectors CPU Time (sees) 

1,000 3203801 All 21 15.34 

5,000 7733099 All 25 33.24 

50,000 11351 First 31 161.95 

250,000 603939541 First 32t 229.48 
* - 'First Optimal' option skips any remaining bases after finding first feasible, whereas 'All 
Bases' checks every basis in P for each sample (co - Tx) 
t - Subsequent search routines found 1 additional optimal basis. 

Basis ID # 

Freq. of Optimality 

Cumulative Freq. 

TABLE 5.3 
FREQUENCY OF BASIS OPTIMALITY FOR PGP2 

(BASED ON 4& RUN FROM TABLE 5.2) 

l 10     11     12    13-32 

.19    .19    .09    .09    .06    .05    .04    .03   .03   .03    .02   .02     .14 

.19    .38    .47    .56    .62    .67    .71    .74   .78   .81    .83   .86     1.0 
* - May not add due to roundoff error. 

TABLE 5.4 
COMPUTATION TIMES OF OSL/OBS/ODV OPTIONS FOR GEOMETRIC SIMPLEX, 
PROJECTED GRADIENT, AND PART AN ALGORITHMS FOR PGP2 (IN SECONDS) 

Algorithm 

GEOMETRIC SIMPLEX (120 Iterations) 

PROJECTED GRADIENT (22 Iterations) 

 PARTAN (2 Iterations)  

OSL 

* - PARTAN search found one additional optimal basis. 

OBS ODV 

861.67 96.3 87.62 

1028.41 66.24 65.99 

212.22 14.75 13.54 

contract on its best vertex. As shown in Table 5.5, the algorithm initially 

progresses beyond its starting set of vertex points, but by iteration 40 settles into 

slowly contracting about its best vertex.   At k = 86, it further shrinks by 
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contracting, then flipping about the best point and enlarging when further 

improving moves are not possible. Another contraction follows the enlargement 

move when it does not provide any better vertices; and, when the final contraction 

offers no help either, the simplex re-initializes itself and proceeds with iteration 

86. Having kept the best vertex from the previous simplex set, the procedure 

settles back into its slow contraction pattern by k = 100 with little improvement in 

the objective function value. This premature contraction most likely occurs since 

TABLE 5.5 
SELECTED GEOMETRIC SIMPLEX MOVES FOR PGP2 

(RANDOM SEED = 296279) 

k X1, X2, X3, X4 Z(x) Simplex Move Replaces 

0 4.00,0.00, 5.00, 6.00 504.40 Initial Vertex (xev) — 

1 6.99, .77, 5.18,6.45 466.40 Expansion xe 5 

3 5.47,0.84, 5.94,4.38 455.02 Contraction xc 5 

10 5.10,1.29, 6.12,4.96 453.84 Contraction xc 5 

20 2.76,1.99,5.69,7.35 450.39 Contraction xc 5 

40 3.02,1.98, 5.88, 6.77 449.94 Contraction xc 5 

85 3.12,1.93, 5.88,6.69 449.88 Contraction \c 5 

85-86 — — Shrinkage — 

85-86 — — Enlargement — 

85-86 — — Shrinkage — 

85-86 — — New Simplex — 

86 7.79,1.95,3.13,8.24 475.74 Expansion xe 5 

90 4.64, 2.44, 5.44,4.07 452.16 Expansion xe 5 

100 3.31,1.70,5.86,6.48 449.68 Contraction xc 5 

110 1.54,2.19,6.64,7.10 449.42 Expansion \e 5 

120 2.70,1.81,6.12,6.82 449.32 Contraction xc 5 
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every interior point of the simplex offers a slight improvement over the next- 

worst vertex value; however, the algorithm does offer considerable improvement 

over the expected value approximation Z(xev). 

The PROJECTED GRADIENT ALGORITHM (Table 5.6) performs very well in 

the case of PGP2. Since it does not encounter either a binding constraint set or a 

multiple optimal solution region, the algorithm suffers from not finding a zero 

gradient due to the non-differential property. Consequently, terminating the 

search requires an arbitrary stopping point y that in this case was determined by 

feedback from the first set of iterations. After initially finding a good solution at 

step 9 (based on d^ < -1.0, j = 1,..., 4), the search 'overshoots' the optimal 

solution in step 10 as evidenced by d3* = -1.71, even though Z(xi0) < Z(x9). 

Therefore, by setting y} = -.99, j = 1,..., 4, the search continues the descent until 

reaching step 22 where djt again is less than -.99 for each of its components. 

Finally, the fact that solutions better than step 11 's do not occur in steps 13 

through 20 tend to confirm X22 as a near-optimal solution. 

Based on the results of the PROJECTED GRADIENT ALGORITHM, the 

PARTAN search (Table 5.7) stops after reaching a similar solution with respect to 

Z(x) and d*, using this prior knowledge allows the search to conclude after two 

iterations. One notable difference between this result and the proposed algorithm 

in Chapter 3 concerns the differences between the estimated optimal scalar 

multiple and the one actually used. In PGP2, the quadratic fit of the line spanning 

the entire feasible region (based on x^-i and p^) rarely exceeds a R2 of .80. After 

several preliminary trials, a subjective interpolation of the data points proved to 
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TABLE 5.6 
SELECTED PROJECTED GRADIENT ITERATIONS FOR PGP2 
 (SCENARIOS = 576, g = 8)  

x^x2, x3,x4 

1 5.00, 5.00, 5.00, 5.00 

2 3.92,4.37, 4.88, 4.74 

3 3.56, 4.08, 5.03,4.54 

4 3.44, 4.16, 4.91, 4.76 

8 2.35,4.32, 5.07, 5.53 

9 2.37,4.40, 5.02, 5.59 

10 2.38, 4.47, 4.97, 5.65 

11 2.37,4.48,4.99,5.65 

21 2.26,4.57, 5.00, 5.66 

22 2.25, 4.57, 5.00, 5.65 

dk Est. q      Act, q      R2 

8.70, 6.95, 8.97, 5.99 

6.65, 5.77, 5.65, 5.13 

0.58, -0.30,0.85,0.86 

0.58, -0.30, -0.43, -0.86 

-0.71, -0.95, -0.43, -0.85 

-0.71, -0.95, -0.43, -0.85 

-0.71,-0.95,-1.71,-0.84 

-0.70,-0.94,-1.71,-0.84 

-0.71,-0.95,-1.71,-0.84 

-0.71, -0.95, -0.43, -0.84 

Z(x) 

0.42 .42 .900 466.62 

0.24 .24 .995 451.61 

0.03 .03 .998 449.13 

0.28 .28 .971 447.79 

-2.11 .01 .999 447.78 

-2.48 .01 .999 447.67 

-0.98 .005 .999 447.60 

-1.04 .005 .999 447.56 

-0.93 .002 .999 447.56 

-2.95   .999 447.55 

TABLE 5.7 
PARTAN ITERATIONS FOR PGP2 (SCENARIOS = 576, Q = 8) 

k x^x2, x3,x4 Est. q Act. q R2 Z(x) 

xo 5.00, 5.00, 5.00, 5.00 .53 .71 .743 466.62 

XI 3.57,4.17,4.84,4.65 .71 .71 .985 449.06 

PI 2.60,4.29,5.10,5.47 .52 .70 .767 447.90 

*2 2.43,4.24,5.11,5.50 .48 — .791 447.84 

give better results than following the regression's estimate.   Consequently, the 

results reflect this deviation. 

5.2.3 PGP2 Response Surface Analysis 

A preliminary full-factorial CCD experimental design using Xo =(2.25, 

4.55, 5.00, 5.50) as the centerpoint and each factor's half-range consisting of ±0.5 
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gives a semi-definite fit (i.e., a saddle point) based on the eigenvalues and 

eigenvectors reported in Table 5.8 (albeit the three negative eigenvalues are only 

marginally curved downward). Since this obviously represents an incorrect fit 

based on the known convexity of the response, the final design departs from the 

standard CCD guidance to induce a positive-definite outcome. Based on the large 

contributions of x2, x3, and x4 to those rotated axes with downward curvature, the 

subsequent design drops the axial representation of x1, and extends those of x2, x3, 

and x4 enough to leverage the regression into the correct fit. (The alternative 

approach of increasing the size of the CCD would impose asymmetrical axial 

points to remain feasible.) Additionally, the minima ridge estimates from the 

preliminary design provided a slightly better centerpoint location for the final 

design for PGP2 (x0 = (2.271, 4.605, 5.045, 5.567)). Although these 

modifications would normally destroy the uniform-precision or rotatibility of the 

design, in this case error resulting from response variability does not occur due to 

using the exact values of Z(x). Consequently, the bias inherent in a polynomial 

approximation constitutes the sole source of any lack of fit, and thus helps 

mitigate the effects of altering the design. 

TABLE 5.8 
A CANONICAL ANALYSIS OF PGP2 (PRELIMINARY CCD) 

Eigenvalues xl 
25.4760 0.5064 
-0.1255 -0.0222 
-0.5921 -0.7749 
-0.7009 0.3776 

Eigenvectors 
x2 x3^ x4 

0.4947 0.5190 0.4791 
0.3542 -0.7849 0.5080 
-0.0720 0.3337 0.5319 
-0.7904      -0.0573 0.4790 
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Table 5.9 gives the final experimental design, Table 5.10 provides the 

regression parameter estimates, and Table 5.11 supplies the eigenvalue, 

eigenvector, and ridge results for PGP2. Although not readily apparent, the very 

small differences between the Z(x)s of the fractional portion of the design with the 

centerpoint's Z(x) give some indication of how a semi-definite fit can occur 

without substantially higher axial response values. Tables 5.10 and 5.11 confirm 

a good fit with a high R2 and positive eigenvalues, respectively. Most 

importantly, Table 5.11 provides the minima and maxima ridge analysis 

associated with the reported eigenvalues and eigenvectors. 

The A canonical analysis in Table 5.11 shows decision variables x2 and x3 

as roughly equal components in the rotated axis containing the highest amount of 

curvature; by contrast, x1 and x4 dominate those rotated axes with the least 

increase in the response Z(x) per unit change from the centerpoint. Consequently, 

the minima ridge in the original coordinate system occurs along a vector where 

increases in x2 and x3 are kept to a minimum by lowering x1 and x4. Reversing 

the criteria for the maxima ridge produces a vector with a rapid rise in the two 

major constituent variables of the first eigenvector (x2 and x3), while significantly 

increasing the distant third contributor x4 as well. 

In conjunction with the minimum ridge results, Table 5.12 presents a 

tolerance limits analysis based on the even coded radius points. The tolerance 

limits succeed in covering the z* response values that will occur on average at 

least 95% of the time; however, the skewed distribution in PGP2 can produce 

values for single instances of zk considerably higher than indicated by either Z(x) 
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TABLE 5.9 
EXPERIMENTAL DESIGN FOR PGP2 

Coded XK 

Uncoded Values 

Response 
Z(x) 

-1 -1 -1 -1 448.532 
-1 -1 -1 +1 448.015 
-1 -1 +1 -1 447.967 
-1 -1 +1 +1 447.627 
-1 +1 -1 -1 447.959 
-1 +1 -1 +1 447.620 
-1 +1 +1 -1 447.665 
-1 +1 +1 +1 449.648 
+1 -1 -1 -1 448.057 
+1 -1 -1 +1 447.717 
+1 -1 +1 -1 447.892 
+1 -1 +1 +1 449.875 
+1 +1 -1 -1 447.755 
+1 +1 -1 +1 449.738 
+1 +1 +1 -1 450.095 
+1 +1 +1 +1 452.159 
0 0 0 +3 450.566 
0 0 0 -3 448.130 
0 0 +6 0 455.702 
0 0 -6 0 455.121 
0 +6 0 0 454.375 
0 -6 0 0 454.043 
0 0 0 0 447.552 

Coded Value 

2.271 4.605 5.045 5.567 . 0 
2.071 4.405 4.845 5.367 -1 
2.471 4.805 5.245 5.767 +1 

or the tolerance limit's test for the maximum value (zm). The scale of the 

probabilities p(zjt) and their respective values zk prevent graphing the probability 

distribution (e.g., Figure 4.6). 
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TABLE 5.10 
REGRESSION RESULTS FOR CC DESIGN IN TABLE 5.9 FOR PGP2 

Analysis of Variance 
Source DF Sum of Squares Mean Square R Square 

Model 14 151.136 10.795 .9636 

Error 8 5.715 .714 
Total 22 

Parameter Estimates 
Variable Coded Par. Est. Uncod. Par. Est. 
Intercept 447.552 1782.33 

xl 0.5159 -182.07 

x2 0.6102 -147.11 

X3 0.7515 -157.55 

x4 1.2163 -144.86 

xlXl 0.4900 12.25 

X1 • X2 2.0463 8.55 

X2 • X2 6.6563 4.62 

x1 • x3 2.2402 9.33 
x2 • x3 12.2771 8.53 
x3 • x3 7.8589 5.46 
xl-X4 0.9195 7.66 

x2 ■ X4 5.5193 7.67 

X3 • X4 5.5160 7.66 

x4-x4 1.7955 4.99 

Based on these results, it appears that PGP2 represents a problem with a 

relatively flat surface in the region of optimality. Table 5.11 reports the coded 

radius' response found Z(x) = 447.805 for the 1.0 coded radius along the minima 

ridge, while Z(x) = 459.002 at the equivalent distance in the maxima direction. 

Furthermore, the tolerance analysis shows the worst case realization increasing 

along the minima ridge as well; consequently, unlike APL1P no tradeoff exists 

between increased Z(x) and a more favorable underlying distribution. 
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TABLE 5.11 
A CANONICAL ANALYSIS OF PGP2 

Eigenvectors 
Eigenvalues xl X2 X3 X4 

14.7865 0.1102 0.6418 0.7017 0.2892 
1.1515 -0.0018 0.6365 -0.7080 0.3059 
0.5485 -0.0050 0.4216 0.0127 0.9067 
0.3143 0.9939 0.0721 -0.0790 -0.0270 

Estimated Minima Ridge 
Coded Radius xl X2 X3 X4 Z(x) 

0.0 2.271 4.605 5.045 5.567 447.55 
0.2 2.254 4.641 5.048 5.461 447.62 
0.4 2.233 4.716 5.074 5.364 447.65 
0.6 2.209 4.794 5.096 5.275 447.71 
0.8 2.181 4.871 5.117 5.194 447.76 
1.0 2.150 4.945 5.137 5.124 447.80 

Estimated Maxima Ridge 
Coded Radius xl X2 X3 X4 Z(x) 

0.0 2.271 4.605 5.045 5.567 447.55 
0.2 2.277 4.750 5.206 5.616 449.54 
0.4 2.282 4.903 5.374 5.652 451.77 
0.6 2.287 5.057 5.542 5.687 454.04 
0.8 2.291 5.211 5.711 5.722 456.47 
1.0 2.295 5.365 5.879 5.757 459.00 

TABLE 5.12 
TOLERANCE LIMITS FOR PGP2 MINIMA RIDGE (RANDOM SEED = 34808) 

xl,x2, x3,x4 t Z(x) Mdn. Zjt 
Population 

Min zjt     Max zjfc 
Tol. 

Min Zfc 
Limit 

Max Z£ % Cvg. 

2.27,4.61, 5.05, 5.67 447.55 466.84 185.07 8719.34 315.83 584.73 .9838 

2.25, 4.64, 5.05, 5.46 447.62 466.36 184.56 8802.09 320.12 2250.94 .9900 

2.23,4.72, 5.07, 5.36 447.65 466.24 184.71 8818.87 334.65 575.31 .9706 

2.21, 4.79, 5.10, 5.28 447.71 466.16 184.85 8830.72 321.92 558.81 .9683 

2.18,4.87,5.12,5.19 447.76 466.08 184.94 8842.56 335.18 702.33 .9804 

2.12,4.95,5.14,5.12 447.80 465.89 184.75 8879.04 339.01 761.46 .9547 
• Entries based on coded radius estimates in Table 5.11 
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PGP2 Analysis Summary. Recommend a near-optimal solution ofx1 = 

2.271, x2 = 4.605, x3 = 5.045, andx4 = 5.567. If any adjustments in this 

solution must be made, then (1) avoid substantial increases in both x2 and 

x3; (2) try to significantly reduce x4 and marginally reduce x1 by 

proportionally increasing x2 and x3, respectively; and, (3) recognize that 

any change will likely increase the cost of the worst-case scenario. 

Finally, Table 5.13 presents the VRT results for PGP2 for selected 

factorial design points from the preliminary experimental design. With the 

exception of the second sample, which interestingly possesses a relatively high 

Z(x), the LH samples perform remarkably and consistently well. By contrast, the 

CV results vary considerably — from nearly 100% reduction to one case of 

variance increase. These results suggest that the LH method as the better VRT 

for the PGP2 problem. (The CV VRT uses ay',; = 1, 2, 3 for controls.) 

TABLE 5.13 
COMPARISON OF ESTIMATOR ACCURACY AND VARIANCE FOR 

RS CV, AND LH SAMPLING TECHNIQUES FOR PGP2 0 r=50, N= =10) 

X1, X2, X3, X4 Z(x) ZRS s2RS Zcv s2cv %t ZLH s2LH    %t 

2.25, 4.55, 
5.00, 5.50 447.7 452.67 101.1 450.19 113.8 -.13 445.45 6.1    .94 

1.75,4.05, 
4.50, 5.00 489.5 525.75 1806.6 505.76 1673.9 .07 507.19 1301.1    .28 

2.75, 5.05, 
5.50, 6.00 458.8 458.83 95.2 458.68 0.1 1.00 459.65 2.6   .97 

1.75,4.05, 
5.50, 6.00 447.9 454.05 222.6 448.65 71.1 .68 447.46 10.7   .95 

t - % Variance reduction from RS; also note that'-' indicates variance increase. 
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5.3 CEP1 

5.3.1 CEP1 Problem Description 

CEP1 represents a two-stage machine capacity expansion problem donated 

to the University of Michigan FTP site by Higle and Sen (1990). The CEP1 

recourse formulation possesses the same transportation problem structure seen in 

APL1P and PGP2, where again the first-stage variables model a capacity 

expansion decision for the supply nodes. However, CEP1 distinguishes itself 

from the previous problems in two ways: (1) the first-stage decision costs possess 

a piecewise linear structure, and (2) the first-stage variables have upper bounds. 

As shown in Figure 5.2, only variables x5 through x8 affect the recourse problem 

directly; however, each one's ability to do so beyond 500 depends upon the 

capacity decision associated with the variable pairings {xJ,yJ+4},j = 1,..., 4. In 

other words, for x5 through x8 the first 500 units are free; each additional unit 

above that point costs an amount associated with its paired variable. 

Consequently, the feasible region of CEP1 can be described in four-dimensional 

space (x5,...,x8) using a piecewise linear cost function; e.g., the cost of x/+4 = 

C/'-MIN[0,X/
+4

 - 500], j = 1,..., 4. CEP1 also models a constraint using x5,..., x8 

where the upper bound is less than or equal to 100. The nature of this constraint 

is unknown to the author; hence, the text will refer to it as the 'joint' constraint. 

The bounds on x5 through x8 also present a unique modification of the 

response surface analysis by further constraining the feasible region Ax = b with 0 

< x < Ux (where Ux represents their upper limits). In APL1P and PGP2, first- 
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MIN  +2.5X1 +3.75x2   +5.0x3   +3.0x4 

S.T.         -x1                                               +x5 <500 

-X2 +x6 <500 

-X3 +X7 <500 

-X4 +x8 <500 

+.08x5 +.04x6 +.03x7 +.01x8 <100 

+x5 

+x6 

+X7 

+x8 

<2000 

<2000 

<3000 

<3000 

-.8x5 +W4*y <0 

-X6 +W5*y <0 

-X7 +W6*y <0 

-X8 +W7*y <0 

Figure 5.2. CEP1 Formulation of First-Stage Variables 
(W'# Represents i& Row of W. Constraints Without WJ'* Comprise Ax < b) 

stage decision variables without upper bounds allows for a response such that 

beginning with any non-optimal feasible x and proceeding in any descending 

search direction, Z(x) will initially decrease due to the combined effects of (1) 

decreasing recourse costs disproportionally offsetting the increasing expense of 

those x/'s rising in value; and, (2) reduced recourse and first-stage costs for 

decreasing x/'s. This marginal cost reduction continues until reaching equilibrium 

at Z(x*), after which the previous effects reverse themselves and drive Z(x) back 

up — any additional supply of increasing yJ become surplus resources in the 

recourse problem, while any decreasing yJ cannot offset the additional cost of 

resource shortages.   As the analysis will shortly show, the upper bounding in 
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CEP1 does not allow x to reach this equilibrium state between changes in x and 

the recourse costs, resulting in a truncated response surface in the {x5,..., x8} 

space. 

Finally, like PGP2, CEP1 restricts its variation to the recourse right-side 

vector co. The demand scenarios' sum total of 216 represents the lowest number 

of possible realizations of all the problems investigated by this dissertation. CEP1 

also models surplus power availability to guarantee complete recourse for any 

value of x and realization of CO. 

5.3.2 CEP1 Optimization Results 

The OBS algorithm found 42 optimal bases and associated dual vectors for 

CEP1 (Table 5.14), with a frequency of occurrence listed in Table 5.15. In this 

particular problem the search techniques found six additional bases while using 

the OBS-COMPLETE method, which occurred primarily when x8 = 3000 and one or 

more realizations of ay = 0. This result implies that the undirected Monte Carlo 

search of the feasible space in the OBS algorithm did not sample this region 

adequately enough, and suggests that additional optimal bases may remain 

undetected. (This analysis of CEP1 uses the ODV method after the OBS- 

COMPLETE algorithm; thus, that algorithm's use of the expanded dual vector set 

ensures unbiased results.) 

In a related matter, the OBS-COMPLETE technique turns in a better 

performance than the ODV method for all three optimal search techniques (Table 

5.16), although again both outperform the OSL option by an order of magnitude. 
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TABLE 5.14 
OBS-COMPLETE RESULTS FOR CEPl 

Sample Size 
(co-Tx) Random # Seed 

All Bases / First 
Optimal 

# Opt. Bases/ 
Dual Vectors CPU Time (sees) 

1000 18975 All 28 27.06 

5000 913342061 All 33 55.48 

50,000 159568 First 42 242.75 

250,000 506886247 First 42t 120.88 
* - 'First Optimal' option skips any remaining bases after finding first feasible, whereas 'All 
Bases' checks every basis in P for each sample (to - Tx). 
t - This run verified the third run using a larger sampling space.  Subsequent search routines 
found 6 additional optimal bases. 

TABLE 5.15 
FREQUENCY OF BASIS OPTIMALITY FOR CEPl 

(BASED ON 4& RUN FROM TABLE 5.14) 

Basis ID # 1 2 3 4 5 6 7 8 9     10 11 12    13-42 

Freq. of Optimality 

Cumulative Freq. 

.29 

.29 

.13 

.42 

.09 

.51 

.09 

.60 

.07 

.67 

.04 

.71 

.04 

.75 

.03 

.78 

.03   .03 

.81   .84 

.02 

.86 

.02     .12 

.88   1.00 
* - May not add due to roundoff error. 

TABLE 5.16 
COMPUTATION TIMES OF OSL/OBS/ODV OPTIONS FOR GEOMETRIC SIMPLEX, 
PROJECTED GRADIENT, AND PART AN ALGORITHMS FOR CEPl (IN SECONDS) 

Algorithm OSL OBS* ODV 

GEOMETRIC SIMPLEX (100 Iterations) 

PROJECTED GRADIENT (6 Iterations) 

PARTAN (7 Iterations)  

244.53 26.74 32.12 

96.87 6.89 8.03 

261.62 18.90 21.43 
* - Each search technique found two additional optimal bases. 

This performance advantage probably results from the ODV algorithm having to 

check every array of a larger set of dual vectors (46), while the first 5 optimal 

bases provide a feasible answer two-thirds of the time (on average) for the OBS- 
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COMPLETE method. Consequently, given the marginal loss of coverage by the 

initial optimal basis set; the ability of OBS-COMPLETE to recognize infeasibility 

and supplement the basis set; and, its slight performance edge over the ODV 

method, the results of CEP1 support using the OBS-COMPLETE technique. 

Regarding the search techniques, Tables 5.16 and 5.18 also show the 

PROJECTED GRADIENT ALGORITHM clearly outperforming both the GEOMETRIC 

SIMPLEX and PARTAN methods, again due to the small number of scenarios all 

search techniques calculate the true response Z(x). The GEOMETRIC SIMPLEX 

ALGORITHM (Table 5.17) especially runs into difficulties with CEP1 due to the 

eventual collapse of the simplex into the expected value approximation xev. 

Indeed, during the first 100 iterations the simplex finds an expansion move to 

replace the fifth vertex every time, and never initiates a shrinkage-enlargement- 

shrinkage cycle. This phenomenon occurs due to a combination of several 

factors: (1) the small coverage area of the collapsed simplex; (2) its location near 

the lower or upper bounds of two of the five variables (counting the slack); (3) 

sampling the entire population of responses z,y due to the small number of 

scenarios; and, (4) the relatively steep slope of the response in this region of x. 

Consequently, the simplex (lacking any real directional data) tends to 

incrementally move closer to the feasible boundaries using relatively smaller 

projection vectors; and, never cycles through the vertices since the steepness of 

the response and use of the true response Z(x) (versus an estimate Z^(x)) almost 

guarantees a marginal improvement over the value of the next-worst vertex. 
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TABLE 5.17 
SELECTED GEOMETRIC SIMPLEX MOVES FOR CEP1 

(RANDOM SEED = 354644707)  

X5, X6, X7, X8 ZOO' Simplex Move Replaces 

0 0, 500, 1666, 3000 367014 

1 14,1000,823,1172 867790 

2 28,1142,978,1095 806841 

3 41,718,1344,1530 704261 

4 10, 829,1213,1931 612543 

5 21,767,1371,1995 573611 

10 2,565, 1587, 2797 404966 

20 0,500,1665, 2995 368060 

40 0, 500,1666, 3000 367014 

60 0, 500,1666, 3000 366972 

100 0,500, 1666, 3000 366951 

Initial Vertex (xev) 

Expansion xe 

Expansion xe 

Expansion xe 

Expansion xe 

Expansion xe 

Expansion xe 

Expansion xe 

Expansion xe 

Expansion xe 

Expansion xe 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 
* - Differences in Z(x) due to fractional components of x. 

By contrast the PROJECTED GRADIENT ALGORITHM (Table 5.18) performs 

very well, although it requires inputs of 1.0 for the scalar multiple of the 

projection vector in every case. The behavior of this algorithm provides the 

clearest evidence of the truncated nature of the response surface for CEP1 in the 

following ways. 

1. Quadratic Estimates. The quadratic regression of the projection vector fits 

extremely well at every iteration; furthermore, the scalar multiple exceeds 

1.0 in each case as well. This implies that the equilibrium point remains 

well below the current optimal solution. 
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TABLE 5.18 
PROJECTED GRADIENT ITERATIONS FOR CEP1 

(SCENARIOS = 216, Q = 8) 

k X5., X6, X7, X8 d* Est. q Act. q R2 Z(x) 

1 500, 500, 500, 500 -.23, .33, .36, .49 5.2 1.0 .999 1,234,278 

2 31, 1155,1218, 1478 -.31, .26, .33, .49 19.9 1.0 .999 640,930 

3 0, 1181,1250, 1526 0, -.13, .04, .39 3.5 1.0 .999 618,832 

4 0, 693,1409, 3000 0, -.05, .06, 0 1.4 1.0 .999 374,482 

5 0,0,2333, 3000 0,0,-.12, .35 1.3 1.0 1.00 355,160 

6 0,0, 2333, 3000* 0, 0, 0,0 — — — 355,160 
* - Optimal solution. 

2. Descent Gradient. Table 5.18 reports the normalized projected descent 

gradient d^ = 0, thus implying an optimal solution since d^is derived from 

the true unconstrained descent gradient -VZ(X6). Given the non- 

differentiable property of E[/J(X,(D,T)], such a condition can occur either 

through multiple optimality or binding constraints as expressed in the 

working set. Furthermore, the unprojected descent gradient -VZ(Xfc) 

remains relatively large (-83, -189, -155, and -170 for x5 through x8, 

respectively) at the optimal solution. This indicates that an unconstrained 

environment would allow further reductions in Z(x) from the current 

position. 

Unlike the GEOMETRIC SIMPLEX ALGORITHM, the PROJECTED GRADIENT 

ALGORITHM'S strong directional capabilities, coupled with scalar estimates 

enhanced by the lack of a flat region, finds the optimal solution quickly. 
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The PARTAN ALGORITHM also performs well, although it suffers 

somewhat from the presence of upper bounds on the first-stage decision variables 

(Table 5.19). Recalling that the PARTAN method derives its directional guidance 

from an alternating gradient and line search approach, PARTAN momentarily 

stalls when x^.i and p^ approach the same point (0, 693, 1409, 3000). However, 

unlike the GEOMETRIC SIMPLEX ALGORITHM, PARTAN regains its bearings due to 

its gradient capabilities, and proceeds to the optimal solution relatively quickly. 

Unfortunately, the assumed advantage of the PARTAN approach — theoretical 

convergence in n-1 iterations for a quadratic function of n parameters — is not 

realized in this case. Indeed, any advantages PARTAN has in this instance comes 

from its projected gradient component, which the PROJECTED GRADIENT 

ALGORITHM itself provides more directly with better results. 

Finally, it should be noted that using the optimal basis or dual vector sets 

can give slightly different directional descent information than OSL due to the 

likelihood of multiple optimality for certain values of x^, which in turn can affect 

the convergence rate of the search. The most notable example of this 

phenomenon occurs with the PARTAN ALGORITHM, where the OBS-COMPLETE 

version takes two additional iterations at the end to confirm optimality. 

Additionally, the estimates of the quadratic fit vary considerably between the 

OSL, OBS-COMPLETE, and ODV versions on the last iteration. This variation 

occurs since a combination of short distances and slightly different projection 

vectors produce different versions of near-optimal sample values of Z(x). 
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TABLE 5.19 
PARTAN ITERATIONS FOR CEP1 (OSL AND ODV) (SCENARIOS = 216, Q = 8) 

k X5, X6, X7, X8 Est. q* Act. q R2 Z(x) 

XO 500, 500,500, 500 4.1 1.0 .999 1,234,278 

XI 31,1155, 1218,1478 4.2 1.0 .999 640,930 

PI 0,1181,1250,1526 3.9 1.0 .999 618,832 

*2 0, 1181, 1250,1526 2.3 1.0 .999 618,832 

P2 0, 693, 1409, 3000 2.3 1.0 .999 374,482 

*3 0, 693, 1409, 3000 2.3 1.0 .999 374,482 

P3 0,693, 1409, 3000 2.3 1.0 .999 374,482 

X4 0,693,1409, 3000 2.3 1.0 .999 374,482 

P4 0,693,1409, 3000 2.4 1.0 .999 374,482 

*5 0,693, 1409, 3000 1.1 1.0 .999 374,482 

P5 0, 0, 2333, 3000 1.2 1.0 .999 355,160 

*6 0,0, 2333, 3000 2.8 1.0 .999 355,160 

P6 0,0, 2333, 3000 1.1 1.0 .999 355,160 

X7 0, 0, 2333, 3000 — — — 355,160 

5.3.3 CEP1 Response Surface Analysis 

The statistical analysis of CEP 1 becomes somewhat abbreviated due to the 

nature of the optimal solution imposed by the upper bounds on the decision 

variables. The fundamental assumption made by this analysis — the existence of 

multiple-optimal or near-optimal solutions within a 'flat' region — obviously does 

not occur in this case. Instead, the optimal solution lies on the 'side' of the 

unconstrained region, prevented from moving towards the equilibrium point at the 

'bottom' by the bounds imposed on the decision variables. Therefore, any 

movement in any feasible direction away from the optimal solution causes a steep 
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increase in Z(x). By contrast, any relaxation of the upper bound constraints on x7 

or x8 produces a considerable decrease in Z(x). 

However, this result does not preclude describing the distributional nature 

of the current optimal solution using tolerance limits. Indeed, an analysis of 

several feasible solutions reveals a very skewed frequency distribution as 

indicated by the large discrepancies between Z(x) and the median (Table 5.20). 

Figure 5.3 on the following page reinforces this description with a graphical 

portrait of the population distribution for the optimal solution. Although Z(x) 

remains the best measure of the long-term operating costs, the tolerance limit 

analysis clearly shows that occurrences requiring much higher expenditures will 

very likely occur over the lifetime of this problem. 

Although a formal response surface approximation as originally intended 

for these type of problems cannot be performed for CEP1, the insight obtained 

can still be presented to the decision-maker. 

TABLE 5.20 
TOLERANCE LIMITS FOR CEP1 (RANDOM SEED = 221789) 

Tol. Limit Population 
X5, X6, X7, X8 Z(x)  Mdn. zjfc Min zfc  Max z& Min Z£  Max z# % Cvg. 

0,0,2333.33, 3000 355,160 154,013 16,667 1,833,413 18,542 1,593,938 .9907 

0,0,2000, 3000 408,826 269,775 15,000 1,950,350 17,000 1,710,350 .9815 

0,0, 2500, 2500 419,729 252,432 16,000 1,931,844 17,875 1,691,844 .9861 

0,0,2666.66,2000 493,034 350,800 15,333 2,030,275 15,333 1,790,800 .9954 
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Figure 5.3. Comparison of Tolerance Limits to Population Distribution, 
Mean, and Median for x* = (0,0,2333.33, 3000) 

CEP1 Analysis Summary. The optimal solution x7 = 2333.33 and 

x8 = 3000 can be substantially improved by relaxing the upper bounds on 

either x8 or the 'joint' constraint. Any feasible deviation from the optimal 

solution under current constraints will considerably increase Z(x) and 

most likely raise the cost of the worst case scenario. Finally, scenarios 

costing four times higher than average are possible. 

Both VRT methods significantly reduce the variance of the estimators of 

Z(x) in the case of CEP1. Table 5.21 shows the results where, unlike PGP2, the 
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CV technique remains competitive with the LH approach (CVs use all three (ü> as 

controls). In both PGP2 and CEP1 the large skewed characteristic of the 

underlying distribution most likely accounts for reducing VRT effectiveness when 

compared to APL1P. Nonetheless, both techniques offer considerable 

improvement over the random sample estimator. 

TABLE 5.21 
COMPARISON OF ESTIMATOR ACCURACY AND VARIANCE FOR 

RS, CV, AND LH SAMPLING TECHNIQUES FOR CEP1 (7=50, A/=10) 

x5, x^, x7, x^ 

0,0,2333, 3000 

0,0,2000, 3000 

0,0, 2500, 2500 

0. 0.2666, 2000 

J£L 
355160 

408826 

419729 

493034 

ZRS S
2
RS 

361058 3.212 

406321 5.714 

415518 1.689 

522554 2.180 

Zcv      s2cv' fet 

354411 .519 .84 

397896 .784 .86 

419349 .431 .75 

497606 .203 .91 
* - in billions.      t - % Variance reduction from RS 

ZLH s2LH*%"L 

346827 

407738 

412513 

513481 

.365 .89 

.570 .90 

1.02 .39 

.287 .87 

5.4 4TERM 

5.4.1 4TERM Problem Description 

4TERM models a vehicle allocation problem between a central depot and 

four outlying terminals. The vehicles are single tractors with a one- or two-trailer 

configuration, while demand constitutes the stochastic right-side elements 

modeling daily pick-up and delivery requirements at each of the four terminals 

(for a total of eight independent right-side random variables). Each random 

variable can take one of two discrete values with equal probability, thus providing 

256 possible demand scenarios.   The first-stage decision variables model the 
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allocation — or basing — of the existing fleet of 300 trailers and 200 tractors 

among the five locations using the constraints 

5 
£x/ = 300 (Trailers) (5.1a) 

10 
Xx/' = 200 (Tractors) (5.1b) 
;=6 

while the availability of single tractor-trailer combinations for daily rent to 

supplement the existing fleet is represented as 

15 
Xx/< 10,000 (Rental Tractor-Trailer). (5.2) 

j=n 

The cost of using xJJ = 11,... , 15 is d = 100, while the existing fleet's expenses 

are zero under this model; i.e., d = 0,j = 1, ... , 10. Equations (5.1) and (5.2) 

constitute Ax = b, and x > 0. 

The T matrix deterministically allocates the decision variables among the 

four terminals and central depot without any gains, losses, or stochastic 

representation; e.g., x1 (trailers) and x6 (tractors) model the transport resource 

availability of the central depot. A single recourse right-side variable models each 

type of resource — tractor or trailer — separately; thus, yJ,j=l,...,10 correspond 

directly to their own resource element. The rental decision vector also transfers to 

the recourse right-side under the same conditions, with the exception that as a 

tractor-trailer package it adds resources to two separate elements; e.g., x11 adds 

one trailer and one tractor to the central depot resources supplied by x1 and x6, 

respectively. Mathematically, the T matrix can be expressed as 
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-xf-x/ +10 = 0,7=1,...,5 (5.3a) 

-x/-x/ + 5 = o, 7 = 6,..., 10. (5.3b) 

The recourse model attempts to retain the same home-base allocation represented 

by the first-stage vector x; however, penalty costs of 1,000 per tractor or trailer 

allow for complete recourse if there is an insufficient number of vehicles or if 

mismatched demand occurs. 

5.4.2 4TERM Optimization Results 

Unlike the previous problems, 4TERM does not lend itself to a 

manageable number of optimal bases for the OBS-COMPLETE or ODV algorithms; 

consequently, OBS-RESET remains the only computational alternative to OSL for 

calculating Z(x). In this case, the algorithm resets the optimal basis and dual 

vector sets to zero for each individual x*, which in turn provides a noticeable 

reduction in computation times. However, as Table 5.22 shows, the amount of 

reduction does not approach the OBS-COMPLETE/ODV results of the other 

problems (assuming its availability). Although several xk require a unique basis 

to cover each of the possible 256 scenarios, most only need between 50 and 60. 

Table 5.23 presents the GEOMETRIC SIMPLEX ALGORITHM results for 

4TERM. Again due to the small number of scenarios, all the search methods find 

the true response Z(x).    Unlike previous problems the simplex avoids a 
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TABLE 5.22 
COMPUTATION TIMES OF SELECTED OPTIONS FOR GEOMETRIC SIMPLEX, PROJECTED 

GRADIENT, AND PARTAN ALGORITHMS FOR 4TERM (IN SECONDS)  

Algorithm 

GEOMETRIC SIMPLEX (100 Iterations) 

PROJECTED GRADIENT (13 Iterations) 

 PARTAN (27 Iterations)  

OSL OBS-RESET 

848.59 262.52 

125.39 91.19 

591.60  449.11 

premature collapse into the vertex xev; indeed, the terminating vertex xioo's 

objective function value of 42369 represents a substantial improvement over 

Z(xev). However, comparing the vertices of the last simplex indicates that a slow 

convergence begins in the latter stages of the search similar to what occurs with 

PGP2 and CEP1. Furthermore, the simplex's computational time already 

approaches an order of magnitude higher (OSL option) than the PROJECTED 

GRADIENT ALGORITHM'S while still somewhat far from a near-optimal solution. 

This persistent tendency of the simplex to prematurely converge casts doubt on its 

ability to continue towards the region of optimality in a reasonable amount of 

time. Finally, the GEOMETRIC SIMPLEX ALGORITHM tends to drop the x11,..., x15 

values at a steady pace. As seen shortly, the PROJECTED GRADIENT ALGORITHM 

initiates a similar steep drop in these decision variables, thus validating the 

simplex's sensitivity to the constraint (5.2). This inclination of x11 through x15 to 

drop to zero early will essentially eliminate them from the experimental design of 

4TERM. 

183 



TABLE 5.23 
SELECTED GEOMETRIC SIMPLEX MOVES FOR 4TERM 

(RANDOM SEED = 800598600)  
Xjfc Z(x) Simplex Move 

192, 20, 50, 8, 30 
0 146,10,25,4,150 53313 

0,0,0,0,0 

71,51,110,35,33 
1 75, 38, 22, 17, 47 699702 

904, 1881,1631, 398,1829 

85, 28,128, 23, 36 
10 83,41, 17,12,46 496764 

879, 881,612, 1025, 1216 

118,35,80,11,56 
20 102, 23, 16,13,46 296387 

530,414, 545, 506, 614 

162, 25, 62, 17, 35 
30 123,14, 16, 18, 30 218909 

512,311,310,375,326 

186,20,46,11,38 
40 124, 8, 15, 20, 33 125958 

300,113,171,118,203 

199, 20, 39, 10, 32 
50 129, 8,15,21, 27 

287,105, 85, 84,101 

201,18,40,11,30 
60 134,7,17,18,24 

228, 62, 29, 41,93 

193,20,47,8,31 
80 141,10, 23, 8, 19 

50, 29, 16, 18, 29 

193,20,48,8,31 
90 142,9,23,7, 18 

37, 19, 20, 14, 17 

192, 20,49, 8, 31 
100 143, 10,24, 6, 17 
 15,13, 10, 13,14 

101767 

80950 

49609 

46221 

42369 

Replaces 

Initial Vertex (xev) 

Expansion xe 16 

Expansion xe 16 

Expansion xe 16 

Expansion xe 16 

Expansion xe 16 

Expansion xe 16 

Expansion xe 16 

Expansion xe 16 

Expansion xe 16 

Expansion xe 16 
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Fortunately, as in previous problems the PROJECTED GRADIENT ALGORITHM 

performs extremely well, reaching an optimal solution in 13 iterations. Indeed, as 

Table 5.24 shows on the following page, the algorithm descends very rapidly 

towards the region of optimality in the first seven iterations before taking another 

six steps to the optimal solution. Unlike APL1P and PGP2, the unprojected 

directional descent vector at optimality is zero, thus implying a 'flat' region 

composed of multiple optimal solutions. Subsequent searches — specifically 

PART AN and those conducted for the experimental design centerpoint explained 

shortly — confirmed multiple optimality by finding different solutions in a similar 

number of steps. Furthermore, the PROJECTED GRADIENT ALGORITHM, like all 

search algorithms this research applies to 4TERM, immediately begins 

eliminating the rental tractor-trailer variables (x11,..., x15). Typically, these 

variables drop to zero well before Z(x) approaches 100,000, thus providing the 

basis for eliminating x11,..., x15 from the final experimental design. In effect, the 

PROJECTED GRADIENT ALGORITHM not only finds the optimal solution, but 

performs a factor screening function as well. 

As in the previous problems, the PARTAN ALGORITHM (Table 5.25) 

converges to an optimal solution as well. Following the same pattern as before, 

the parallel tangent property does not appear to supply any additional advantages 

over using the projected gradient portion alone. However, starting from the same 

initial point as the PROJECTED GRADIENT ALGORITHM, the PARTAN ALGORITHM 

finds a different optimal solution, thus confirming multiple optimality of 4TERM. 
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TABLE 5.24 
SELECTED PROJECTED GRADIENT ITERATIONS FOR 4TERM 

(SCENARIOS = 256, Q = 8)t  
x!...x

5 d!...d5 

x6     x10                           d6...d10              Est4    Act<?     R         ZW 
xll'" x15 dn...d15   
60, ...,60 0, ...,0 

1 40 40 0, ...,0                 6.8        1.0       1.0       1035A; 
2k 2k -.07,-.07,-.07,-.07,-.07 

60 60 .58,-.15,-.15,-.15,-.15 
2 40, ...,40 0,...,0                 .31        .31       .99      73795 

0, ...,0 0, ...,0 

135,41,41,41,41 -.01, -.01, .03, -.01, -.01 
3 40 40 .58,-.14,-.14,-.14,-.14      .31        .31       .98      52535 

0, ...,0 0, ...,0 

134,41,44,41,41 -.15, -.15, .59, -.15, -.15 
4 90,28,28,28,28 0 0 .13        .13       .99      41096 

0, ...,0 0, ...,0 

129, 35, 66, 35, 35 -.07, -.07, -.07, -.07, .28 
5 90,28,28,28,28 -.14,-.14, .54,-.14,-.14      .23        .23       .99      38930 

0, ...,0 0, ...,0 

125, 32, 62, 32,48 .17, -.04, -.04, -.04, -.04 
6 83,21,53,21,21 0,...,0                 .05        .05       .99      35723 

0, ...,0 0 0 

132, 30, 61, 30,47 .00, -.00, -.00, -.00, -.00 
7 83,21,53,21,21 0,...,0                 .01        .01       .99      35518 

0 0 0, ...,0 

137,32,64,21,47* 0, ...,0 
13              83,21,53,21,21 0, ...,0                  —        —       —      35514 
 0,...,0 0,...,0       

* - Optimal solution, t - k represents 1,000. 
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TABLE 5.25 
SELECTED PART AN ITERATIONS FOR 4TERM (SCENARIOS = = 256, 0 = 8) 

X1 ... x^ 

k 
x6...x10 

Xll...xl5 Est. q*             Act. q R2 Z(x) 

60, ...,60 
*0 40, ...,40 

2k, ...,2k 

60 60 

6.75                 1.00 1.0 1035014 

xi 40, ...,40 
0, ...,0 

111,47,47,47,47 

.312                  .21 .99 73795 

PI 40, ...,40 
0,...,0 

111,46,50,46,46 

15.18                 1.00 .99 52033 

P2 89, 28,28, 28, 28 
0, ...,0 

117,41,60,41,41 

.361                 .361 .99 39481 

P3 98,26, 26, 26, 26 
0 0 

118,40,61,40,40 

.306                .306 .98 38864 

X7 75, 18, 58, 18, 32 .06                  .06 .99 36131 
0,...,0 

128, 30, 65, 30,47 
p18   75,18,59,18,30      .06       .01      .99       35611 

0 0 

133, 33, 62,27,45 
P23   75,18,59,18,30      .13       .13      .99       35517 

0,...,0 

139, 32, 60,26,43 
X26    75,18,59,18,30       —       —      —       35514 

0, ...,0 
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5.4.3 4TERM Response Surface Analysis 

Several aspects of 4TERM pose additional challenges to fitting a 

polynomial approximation to Z(x); specifically, the dimension of the decision 

vector x, the tractor/trailer equality constraints (5.1), and its multiple optimal 

solutions. As indicated already, the gradient search techniques provide strong 

evidence that x11 through x15 simply do not assume a role in the region of optimal 

or near-optimal solutions. If any doubt persists regarding such an assumption, a 

factor screening design could help verify these results. However, this research 

considers the evidence from the gradient methods strong enough for the response 

analysis to proceed without considering the rental tractor-trailer decision 

variables. 

Eliminating these five variables reduces the remaining number of variables 

under consideration to ten (x1 through x10). However, the equality constraints 

(5.1) do not allow the necessary degrees of freedom to construct a 10-variable 

central composite design; indeed, two variables — one each from the tractor and 

trailer groupings — must be 'thrown out' in order to construct a CCD design on 

the remaining eight. In effect, this reduction projects the true response onto the 

hyperplane defined by the remaining variables, thus providing a framework for 

applying 'standard' designs. This in turn suggests making a priori judgments on 

which projection would undergo the least distortion, and could consider such 

items as constraint coefficients, solution comparisons, or subjective interests. In 

4TERM, this research eliminates x1 and x6 due to (1) their large values; (2) 

subjective interest in the outlying terminals (x1 and x6 represent the central 
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terminal's trailer and tractor capacity, respectively); and, (3) their relatively small 

variation among optimal solutions. (Other alternatives not explored by this 

research for handling input factor linear dependence include simplex-lattice 

designs (Scheffe 1958) and special linear transformations (Draper and Lawrence 

1965a,b; Thompson and Myers 1968). Cornell (1973, 1979, 1981) also reviews 

these approaches with an accompanying bibliography.) 

Multiple optimal solutions pose another challenge to the accuracy of the 

response surface approximation. Preliminary experimental designs varying in 

size, but all using the PROJECTED GRADIENT ALGORITHM'S optimal solution, gave 

polynomial approximations with either positive indefiniteness (one of the eight 

eigenvalues slightly negative) or inadequate fits (R2 values below .8). Since the 

presence of multiple optimality implies that the centerpoint can lie anywhere in a 

flat region, these results suggest the optimal solution from the PROJECTED 

GRADIENT ALGORITHM lies near the 'edge' of the region, and that a better fit can be 

derived using a more centrally located optimal solution. Such a centerpoint can 

be found using a convex combination of additional optimal solutions discovered 

by the PROJECTED GRADIENT ALGORITHM under different initial starting points. 

Table 5.26 presents five such optimal solutions; since x3 and x5 represent the two 

solutions furthermost apart (xi, x2, and x3 are fairly close), the design centerpoint 

xc represents an average of those two extremes. 

The final experimental design (Table 5.27) employs 64 runs in the CCD 

portion (a quarter of the 256 full factorial), 16 axial points with coded multipliers 

of 2, and one centerpoint. The design possesses a resolution level of V, which 
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TABLE 5.26 
DERIVATION OF EXPERIMENTAL DESIGN CENTERPOINT X*C 

* 
x k Xl X2 X3 X

4 
X5 X6 X

7 
X
8 

X
9 x10 Ok 

* 
x 1 137 32 64 21 46 84 21 53 21 21 .0 
* 

x 2 138 39 66 15 42 69 41 30 40 20 .0 

* 
x 3 151 32 60 15 42 78 19 35 19 49 .5 
* 

x 4 137 30 61 15 57 87 17 40 29 27 .0 
* 

x 5 137 47 61 15 40 108 24 35 8 25 .5 

x c 144 39.5 60.5 15 41 93 21.5 35 13.5 37 

insures no two-way interaction confounding, and follows a design generator from 

Lorenzen and Anderson (1993). A full-factorial design for six variables — x2, x3, 

x4, x7, x8, and x9 — provides the structure for the 26 = 64 CCD; then x5's coded 

value is set by multiplying the coded values of x2, x4, x8, and x9, while 

multiplying x3, x4, x7, x8, and x9 determines x10. 

Table 5.28 shows the polynomial approximation based on the data in 

Table 5.27, while Table 5.29 reports the eigenvalue, eigenvector, and ridge 

results. The regression supplies an acceptable fit (R2 of .90) with all eigenvalues 

positive (positive definite fit), thus assuring a reasonable approximation of the 

projected response. As before, the best information comes from the canonical 

analysis, which in 4TERM's case provides several very useful insights. First of 

all, variables x5 and x8 dominate the two axes most sensitive to changes in the 

rotated coordinate system, while x7, x9, and x10 each heavily contribute, 

respectively, to the three least sensitive axes. Consequently, when examining the 

estimated ridge of maximum response, x5 and x8 drop significantly, with little 
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TABLE 5.27 
EXPERIMENTAL DESIGN FOR 4TERM 

Coded Xfc Response 

X2 X3 X4 X5    x' X8 X9 x10 Z(x) 
1        _1 _1 _ J -1 41206.921875 

-1   -] -1 _1 -I 45604.984375 
1    -1 _1 -1 41206.921875 

-1        -1 -1 -1 45604.984375 
_1 -1 41206.921875 
_1 _1 45604.984375 
_ j _J -1 41206.921875 

-1    1 _2 "1 -1 45604.984375 
-1 -1 45252.585938 
1        _' -\ 40854.507812 

-1        - _] -I 42080.984375 
1        _' _] -1 38189.906250 

_l -1 -1 45252.585938 
_] -1 40854.507812 

-1 -1 -1 "] 42080.984375 
38128.679688 

-1 -1 _] 43439.085938 
1 _] -] 39038.375000 

~1        - _1 _] -1 43439.085938 
1 -1 _] -1 39733.085938 
4 _] -] -1 43439.078125 

_] _] -1 39038.375000 

-: -1 -1 -] 43439.085938 
39703.816406 

1        _ _] -1 38685.945312 
-1 _] -I 43086.664062 

-i 1 -] 35575.906250 
39915.078125 

_' 38685.945312 
-1 -[ 43086.664062 

_' -I 35575.906250 
„' -I 39915.078125 

-1        - 1 45604.984375 
1        _ 1 41206.921875 

-1 1 -\ 45604.984375 
1 -1 41230.796875 

_1 1 -1 45604.984375 
I -1 41206.921875 

- -] I   -1 1    -1 45604.984375 
41217.343750 

-1 40854.507812 
-1 45252.585938 

- 
I L    -1 

37682.906250 
42080.984375 
40854.507812 
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TABLE 5.27 — CONTINUED 

Coded Xk Response 

X2 X3 X4 X5 X7 X8 X9 x10 Z(x) 
_1 45252.585938 

-1 -1 -1 37682.906250 
42080.984375 

_1 _i -1 39038.375000 
_1 _1 _ \ -1 43439.085938 

-1 -1 -1 39038.375000 
43439.078125 

-1 -1 -1 39038.375000 
43439.078125 

-1 -1 -1 39038.375000 
43439.093750 

-1 -1 -1 -1 43086.671875 
38685.945312 

-1 -1 -1 -1 39915.078125 
37220.449219 

-1 -1 -1 -1 43086.664062 
38685.937500 

-1 -1 40003.546875 
37186.652344 

2 0 0 0 0 0 0 0 35801.640625 

-2 0 0 0 0 0 0 0 41473.578125 

0 2 0 0 0 0 0 0 35802.417969 

0 -2 0 0 0 0 0 0 42209.976562 

0 0 2 0 0 0 0 0 35516.523438 

0 0 -2 0 0 0 0 0 42065.859375 

0 0 0 2 0 0 0 0 35802.417969 

0 0 0 -2 0 0 0 0 47621.117188 

0 0 0 0 0 0 0 2 35514.363281 

0 0 0 0 0 0 0 -2 37666.898438 

0 0 0 0 2 0 0 0 35514.363281 

0 0 0 0 -2 0 0 0 38013.695312 

0 0 0 0 0 2 0 0 35514.363281 

0 0 0 0 0 -2 0 0 49649.039062 

0 0 0 0 0 0 2 0 35514.363281 

0 0 0 0 0 0 -2 0 38764.906250 

0 0 0 0 0 0 0 0 35514.363281 

Uncoded Values Coded Values 

X2 X3 X4 X5 X7 X8 X9 x10 

40 61 15 40 22 35 13 37 0 

30 51 5 30 17 25 8 27 -1 

50 71 25 50 27 45 18 47 1 
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TABLE 5.28 
REGRESSION RESULTS FOR CC DESIGN IN TABLE 5.27 FOR 4TERM 

Analysis of Variance 
Source DF Sum of Squares Mean Square R Square 

Model 44 807372056 18349365 .9001 
Error 36 89585747 2488493 
Total 80 896957803 

Selected Parameter Estimates 
Variable Coded Par. Est. Uncod. Par. Est. 
Intercept 36182 141783 

X3 -1601 -748 

X4 -2180 -1183 

X5 -4407 -1435 

x8 -2421 -830 

x2 • x2 2372 6 

x3 • x3 2740 7 

X3 -X8 -2975 -7 

X4.x4 2525 25 

x^ • x* 5446 14 

X7.x7 498 5 

X8 -X8 6316 16 

X9.X9 874 9 

change in the remaining variables (of course, the eliminated variables x1 and x6 

make up the difference). 

Designating the outlying terminals A (where x2 and x7 represent the basing 

of terminal A'& trailers and tractors, respectively), B (x3,x8), C (x4,x9), and D 

(x5,x10), these results show that minimal increases from the optimal solution 

represented by the centerpoint involve significant reallocation of (1) trailer 

resources from the central terminal to the outlying nodes B, C, and D, and (2) 

tractors from the central terminal to nodes B and D. By contrast, the practical 

insight of the maxima ridge strongly suggests not reducing the number of trailers 
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TABLE 5.29 
A CANONICAL ANALYSIS OF 4TERM 

Eigenvectors 
Eigenvalues X2 X3 

6856 .0058 -.3387 
5476 .0626 .0696 
2660 .5040 .3731 
2346 .7075 .2919 
2072 -.4913 .8091 
864 -.0134 -.0374 
609 .0058 .0011 
214 .0011 .0001 

Eigenvalues 
6856 .0002 .9405 
5476 -.0015 .0036 
2660 -.0003 .1319 
2346 -.0042 .1018 
2072 .0017 .2944 
864 .0177 -.0308 
609 .8478 .0003 
214 -.5299 -.0000 

.0002 .0198 

.0450 .9946 

.7594 -.0932 
-.6344 -.0366 
-.1274 -.0212 
-.0499 -.0021 
-.0017 .0019 
-.0004 .0004 

X9 x10 

.0165 .0002 

.0080 -.0015 

.0626 -.0003 
-.0081 -.0039 
.0264 .0016 
.9972 .0134 
-.0221 .5298 
-.0020 .8480 

Coded Radius 
Estimated Minima Ridge 

Coded Radius 

Coded Radius 

Estimated Maxima Ridge 

0.0 40.0 61.0 
0.5 39.5 59.7 
1.0 39.0 60.7 

* - Regression estimate. 

15.0 
13.6 
12.9 

40.0 
31.9 
24.6 

Z(x)* 
36182 
40332 
47280 
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at terminals C and D or the tractors at terminal B. Furthermore, tests along the 

minimal ridge found multiple optimal solutions to a distance of .3 coded radius; at 

1.0 the actual near-optimal solution of 35796 represents only a .79% increase over 

optimality. These results, combine with those of other known optimal solutions, 

provides the decision maker with a range of options in addition to the insight of 

the canonical analysis. 

Regarding distributional analysis, Table 5.30 reports the results for 

selected optimal and near-optimal solutions from the response surface analysis 

and prior gradient searches. Unlike the previous problems, 4TERM exhibits a 

relatively stable and symmetric distribution, without either extremely high-cost 

(though relatively rare) scenarios, or detectable parameter or range changes within 

the region of optimality. Indeed, the near-optimal solution has the highest-cost zk, 

suggesting that tradeoffs between lower maximum costs for slightly higher 

expected values does not occur in this problem, at least not along the minima 

ridge. Figure 5.4 gives the graphical presentation of 4TERM's distribution at 

optimality. 

Finally, following the pattern in previous problems, the LH VRT turns in 

excellent results, while CVs produce a very mixed bag, with one case again 

showing an increase — 40% — over simple random sampling (Table 5.31). 

The summary and follow-on analysis of these results can take on several 

forms and emphasis, depending upon the focus and interests of the decision- 

maker. One possibility would expand the minima ridge insight with a 

supplementary analysis of convex combinations of optimal solutions, or perhaps 
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TABLE 5.30 
TOLERANCE LIMITS FOR 4TERM (RANDOM SEED = 58047800) 

Population Tol. Limit 
xl,...,X10* Z(x) Mdn. Zfc Minz£ Maxzfc Min z£ Max Z£ % Cvg. 

144,40,61,15,40 
93,22,35,13,37 35514 35767 22617 45962 22617 44322 .9844 

137,47,61,15,40 
108,24,35,8,25 35514 35767 22617 45962 22617 44322 .9844 

151,32,60,15 
78,19,35,19,49 35514 35767 22617 45962 22617 44322 .9844 

124,39,70,19,48 
76,21,41,13,49 35796 35767 22617 50578 22617 48938 .9922 

t - x^,..x" set to zero. 

P(zp 
18n 

16-1 

14 

12 

ion 

8 

6 

4- 

2- 

Z(x)niedian 

U    I    1    l""l    I1111!1111!111!11111! | |'i'i!i'ij'"i|iii|""j""|'""| jiiiri|iiiii|iiiijriii|iiii|iiii|iii|iijii^iiijiiiijiii1|iiii|iii^iiii(ini| jiiii[|iiiii|iiii|iiii|iiiijiii|iiiijiiii|iifjiiii|iii[ifiii|i[^    j    i 2 

22 24 26 28 30 32 34 36 38 40 42 44 46  ' 
(in thousands) 

Figure 5.4. Comparison of Tolerance Limits to Population Distribution 
for 4TERM Centerpoint 
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TABLE 5.31 
COMPARISON OF ESTIMATOR ACCURACY AND VARIANCE FOR 

RS, CV, AND LH SAMPLING TECHNIQUES FOR 4TERM (7=50, N=10) 
xi,...,x5 

x6,...,xio* 

144,40,61,15,40 
93,22,35,13,37 

137,47,61,15,40 
108,24,35,8,25 

151,32,60,15 
78,19,35,19,49 

137,40,63,16,44 
90,22,38,13,37 

124,39,70,19,48 
76,21,41,13,49 

Z(x) 

35514 

35514 

35514 

35514 

35796 

ZRS 
-2  * 
SZRS 

35595 121 

35237 712 

35475 1170 

35196 680 

36165 1356 

Zcv  s2cv* 'J 

35507 76  .37 

35246 536 .25 

35354 978 .16 

35072 189 .72 

36271 1901 -.40 

ZLH S
2
LH* 

35522 

35515 

35500 

35533 

35768 

20 .83 

6 .99 

24 .98 

11 .98 

99 .93 

$ - x1 *.. .x15 set to zero. * - in thousands, t - % Variance reduction from RS ('-' implies increase). 

finding additional response surface approximations using different optimal 

centerpoints. The examples below suggest two techniques for presenting the 

information. 

1. Ridge Charts. This type of chart (Figures 5.5 and 5.6) captures the ridge 

results for the decision-maker by plotting the amount of change in the 

uncoded decision variables values per unit change in the coded deviation 

from the design centerpoint (e.g., optimal solution). For example, Figure 

5.5 shows that if we wish to proceed half the distance away from the 

centerpoint in terms of the coded experimental design region, then 

terminal D's tractor allocation would have to increase by 1, terminal Cs 

trailer allocation by 2, etc., to remain on the minima ridge. In essence, this 

chart simply displays in graphic form the data from Table 5.29. 
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2. 'Rule-of-Thumb'. This type of table (Table 5.32) presents simple notional 

trend information for field use or operational guidance (i.e., given a 

choice, how do the drivers decide where to park the trucks overnight?). 

Using these techniques, the multi-dimensional behavior of 4TERM can be 

summarized for the decision-maker as stated on the following page. 

TABLE 5.32 
NOTIONAL SUMMARY OF 4TERM SENSITIVITY*  

Terminal B Terminal C Terminal D 
Trailer       Tractor       Trailer       Tractor       Trailer       Tractor 

Near-Optimal 
Avoid 

Incr. Incr. 
Deer. 

Incr. 
Deer. 

Incr. 
Deer. 

Incr. 

* - Terminal A remains the same. Central node balances changes in Terminals B, C, D. 

Term. D Tract. 

Term B Trail. 

Term. D Trail. 

Term. B Tract. 

Term. C Trail. 

i        i 1 1 1 1 1 1 1 1 

0.0   0.1    0.2   0.3   0.4   0.5   0.6   0.7   0.8    0.9    1.0 

Unit Radius 

Figure 5.5. Minima Ridge Results for 4TERM 
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5   -4 

S   -6 

1   -8 
I -10 

£ -12 
Q 

-14 

-16 

Term. C Trail. 

Term. B Tract. 

 Term. D Trail. 
 1 1 1 1 1 1 1 1 1        i        i 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
Unit Radius 

Figure 5.6. Maxima Ridge Results for 4TERM 

4TERM Analysis Summary. Figures 5.5 and 5.6 compare deviations 

from the proposed optimal solution that minimize and maximize, 

respectively, increases in expected cost, while Table 5.32 provides 

notional guidance. Optimal solutions should also minimize the highest- 

cost scenario. 

5.5 20TERM 

5.5.1 20TERM Problem Description 

20TERM, a straightforward extension of 4TERM, represents the largest 

stochastic problem this research investigates: 63 first-stage decision variables and 

40 random right-side elements (again modeling pick-up and delivery demand for 
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the 20 outlying terminals). 20TERM's first-stage constraint structure Ax = b 

follows the same pattern as 4TERM 

21 
Xx/ = 600 (Trailers) (5.4a) 
j=i 

42 
£x/ = 400 (Tractors) (5.4b) 

;=22 

62 
X x/' < 10,000 (Ttenta/ Tractor-Trailer) (5.4c) 

;=43 

where the cost of using xJ,j = 43,..., 62 again is d = 100, while the existing fleet's 

expenses are zero; i.e., d = 0,j= 1,..., 42. The T matrix converts the x variables 

to the recourse right-side in 4TERM's manner as well. As in the case of 4TERM, 

the right-side random variables each can take one of two values with equal 

probability; however, while 4TERM's eight variables allow for 256 total possible 

scenarios, 20TERM's 40 variables permit over 1.0995-1012 distinct realizations of 

recourse demand. Finally, the size of 20TERM's recourse basis dimension 

increases to 128 from 4TERM's 28. 

The resulting computational demands of 20TERM require modifying the 

previous response analysis strategy. The first obvious change recognizes that the 

true values for Z(x) cannot be found (in any practical sense); therefore, both the 

search and experimental design must estimate Z(x) using Zs(x). However, 

exploratory samples of 20TERM show both a significant level of variance in 

ä(X,(ö,T) and VRT patterns similar to those seen already, thus ruling out ZRS(X) 

and Zcv(x).   Furthermore, both preliminary tests on 20TERM and previous 
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problems indicate that the GEOMETRIC SIMPLEX and PART AN ALGORITHMS are 

not up to the task of solving a problem of this size. Finally, tests on sample 

projected gradients most often found a unique basis for every sample realization 

of the random variables, thus rendering the OBS-RESET option ineffective. 

Consequently, this research resorts to finding a near-optimal solution with the 

PROJECTED GRADIENT ALGORITHM using the OSL option and the LH estimator 

ZLH(X) with a stratification size of 200. 

5.5.2 20TERM Optimization Results 

Early research on applying the PROJECTED GRADIENT ALGORITHM to 

20TERM found that, like the previous problems, the algorithm tends to find the 

region of optimality fairly quickly. However, unlike previous attempts, 

converging to a near-optimal solution requires far more computational time. 

Consequently, the following three modifications help adapt the PROJECTED 

GRADIENT ALGORITHM to the demands of 20TERM: 

1. Starting Solution. Unlike previous applications of the PROJECTED 

GRADIENT ALGORITHM, where the initial solution represents an equal 

allocation of resources to each first-stage decision variable xJ, this problem 

uses the optimal solution (xev) of the expected value approximation, with 

EV = MIN{CX + fc(x,E[co],E[T])} as the starting point xi (i.e., xi = xev). 

Recalling the estimator Zb^x^) equals the expected result of using the 

expected value solution xev, E[ZLH(xev)] > E[ZLH(x*)] > EV. For 

20TERM, EV= 239,272.9 while ZLH(xev) = 279,674.25. 
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2. Non-Constant Stratification Size. The LH sampling size of the x^ vector 

that estimates the descent gradient is set to 200, whereas the stratification 

size of the responses fitted by the quadratic for calculating the stepsize 

drops to 50. This idea assumes that directional information coming from 

the gradient estimate of a single solution x* should be more accurate than 

any single response estimate along the line projection. 

3. Constant Stepsize. As the algorithm approaches near-optimality, the 

distance of the line segment defined by the directional gradient, incumbent 

solution xjfc, and lower bounds x > 0 is such that its curvature becomes hard 

to detect. Therefore, at this point the PROJECTED GRADIENT ALGORITHM 

abandons equidistant sampling of the directional line segment in favor of 

small constant stepsizes over a set number of gradient iterations; in effect, 

resorting to Ermoliev's (1988) suggestion of following small, iterative 

search patterns. 

Table 5.33 gives the results of the modified projected gradient search for a 

near optimal solution. After two iterations using quadratic estimates, the process 

shifts to using small constant stepsizes (.01-.04) over 50-100 iterations. The 

process terminates after run #13 indicates little additional progress being made 

after 100 iterations. It should be noted that while the projected gradients show 

continued descent possible, the 'leveling-off trend suggests the true optimal 

solution will not be much less than 254,000; thus, the best solution found in run 

#13 should provide an adequate centerpoint (xcp) for fitting a response surface. 
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TABLE 5.33 
PROJECTED GRADIENT RESULTS FOR 20TERM 

Run# Rand. Seed Sclr. Type* # Iter. (jfc) CPU Timet Start ZLH(X) 

279674.25 
BestZLH(x)* 

1 13414 Quadr. Est. 37 2473 267810.03 

2 885623 Quadr. Est. 14 450 267573.59 266883.09 

3 64069848 Const. .01 50 1163 267508.91 266271.16 

4 22691 Const. .03 50 1153 266719.00 264910.53 

5 720760 Const. .04 100 2164 265302.31 264410.84 

6 6273213 Const. .04 50 1105 265082.19 262471.28 

7 931925 Const. .03 50 982 262697.75 261063.59 

8 405692 Const. .02 75 1456 262228.81 259841.73 

9 2555416 Const. .02 75 1452 259614.28 258648.66 

10 598372248 Const. .03 75 1438 258730.72 257718.31 

11 3956152 Const. .03 75 1409 258202.91 256692.53 

12 4106067 Const. .03 75 1364 257749.39 255797.83 

13 512255541 Const. .03 100 1836 256513.97 254945.70 

*-Q = 5 for quadratic estimates, t - Units in seconds; total time 5 hrs. 7.5 mins. 
$-Not necessarily kß observation. 

(Morton's (1994) results found the lower and upper bounds of Z(x*) to be 249,747 

and 256,497, respectively.) Refer to Table 5.34 in the following section for the 

values of xev and xcp. 

5.5.3 20TERM Response Surface Analysis 

Since 20TERM's number of first-stage decision variables renders their 

description in every table cumbersome, Table 5.34 consolidates the values of xev, 

the best solution found by the PROJECTED GRADIENT ALGORITHM (xCp), and the 

factor ranges of the Plackett-Burman screening design. Table 5.34 also presents a 

good starting point for defining those factors and associated parameters for the 

experimental design phase of the analysis. 

As discussed in Section 4.3, problems the size of 20TERM preclude using 

full factorial designs; indeed, even highly fractionated experimental designs for 
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TABLE 5.34 
EXPECTED VALUE APPROXIMATION (xev), EXPERIMENTAL DESIGN 

CENTERPOINT (xCp), AND SCREENING DESIGN (-,+) VALUES FOR 20TERM 

Trailers 

xl X2 X3 X4 X5 X6 X7 X8 X9 x10 x" 

136 20 50 8 0 0 21 0 0 22 29 

XCP 78.5 25.5 55 13.5 0 0 26 0 0 27 34 
  20.5 50 8.5 — — 21 — — 22 29 

+   30.5 60 18.5 — — 31 — — 32 39 

x12 x13 X
14 x15 x16 X17 x18 X19 x20 x21 

35 35 26 32 25 41 33 44 12 31 

XCP 40.5 40 31 37 29.5 46 33 48 0 35.5 

35.5 35 26 32 — 41 — — — 30.5 

+ 45.5 45 36 42 — 51 40.5 

Tractors 
x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 

167.5 10 25 4 0 0 10.5 0 0 11 18.5 

XCP 

+ 

129.5 13.5 28.5 6.5 0 0 13.5 0 0 14 18 

x33 x34 x35 x36 x37 x38 x39 x40 X41 x42 

17.5 17.5 13 16 12.5 23 16.5 22 0 15.5 

XCP 20 20 15.5 19 17 24.5 17 25 0 18.5 

+ 

Tractor-Trailer Rental 
X43 X44 x45 x46 X47 x48 X49 x50 x51 x52 x53 

312 0 0 0 30 38 0 14 12 0 0 
XCP 382.5 0 0 0 35.5 42.5 0 19 17.5 0 0 

377.5   — — 30.5 37.5 — 14 12.5 — — 

+ 387.5   — — 40.5 47.5 — 24 22.5 — — 

x54 x55 x56 x57 x58 x59 x60 x61 x62 x63 x64 

XCT 0 0 0 0 0 0 0 0 12 0 9582 

XCP 0 0 0 0 0 0 0 0 28.5 0 9475 

+ 

the number of factors present in 20TERM are prohibitive. Consequently, 

reducing the number of factors based on subjective interests of the decision- 

maker, a priori knowledge or insight into the problem, or preliminary screening 
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becomes necessary. This research employs the last technique by selecting the 

nineteen xj variables that differ the most between xev and xCp as candidates for a 

Plackett-Burman screening design suggested by Montgomery (1984) and Plackett 

and Burman (1946). This criteria implies an interest in those factors that we wish 

to avoid changing. By contrast, screening for those factors that change the least 

during the search assumes a greater interest in finding alternative near-optimal 

solutions. In this instance, although 36 variables change value from starting to 

near-optimal solutions, the most significant differ by 5 or more. As in the case of 

4TERM, variables x1 and x22 provide the necessary degree of freedom for the 

equality constraints; hence, they're ignored. Table 5.35 shows the factor settings 

and estimated responses, while Table 5.36 provides the regression analysis. 

The coded parameter estimates provide the basis for selecting with factors 

to include in a CCD design. Following the selection criteria of using those 

variables that most influence the response, the following 11 variables represent a 

descending order of first-order significance: x4, x14, x7, x21, x37, x13, x51, x10, x62, 

x12, and x2. Although x11 could arguably be included (its parameter estimate is 

only 10 less than x2), CCD design limitations restrict the number of factors to 11 

in order to keep the fractional portion to 128 runs and still retain a resolution V 

level. 

The final fractional portion of the CCD design follows a design generator 

suggested by Lorenzen and Anderson (1993) where a full-factorial design for 

seven variables — x4, x7, x14, x21, x37, x51, x62 — provides the structure for the 

211"4 = 128 runs. The remaining factors' coded values are calculated as follows: 
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TABLE 5.35 
PLACKETT-BURMAN SCREENING DESIGN FOR 20TERM 

Selected x' Variables Fron i Ta 
+ 

ble5 .34* ZLH(X) 

+ + . + + + + _ + . - - - + + - 272044 

+ + + + + + . + - + - - - - + + 268636 

+ + + _ _ + + + + . + - + - - - - + 269038 

+ + + + _ _ + + + + - + - + - - - - 271066 

+ + + + _ _ + + + + - + - + - - - 270387 

+ + + + _ . + + + + - + - + - - 269650 

+ + _ + + _ _ + + + + - + - + - 271463 

+ + _ + + _ . + + + + - + - + 271990 

+ . . + + „ + + . - + + + + - + - 272466 

+ . _ _ + + _ + + . - + + + + - + 274566 

+ + . „ + + _ + + . - + + + + - 269603 

+ + _ _ _ _ + + . + + - - + + + + 271065 

+ + + _ _ _ _ + + . + + - - + + + 271042 

+ + + + _ _ _ _ + + - + + - - + + 272404 

+ + + + + _ _ _ . + + - + + - - + 269194 

+ + + + + . + - - - - + + - + + - - 270591 

+ + + + _ + _ + . - - - + + - + + - 270286 

+ + + + _ + . + - - - - + + - + + 269377 

+ - + + + + - + - + - - - ■ + + ~ + 271671 
284791 

* - Columns correspond to variables in Table 5.34 (from left to right in ascending order of/) for 
those variables with values for '-' and '+'. For instance, the second column represents x3 where '-' 
equals 50 and'+' equals 60. Random Seed for this design is 630011823. 

x2 = x21 . x37 . x51 . x62 

X10 = x7.x14.x51.x62 

x12 = x4 . x14 . x37 . x62 

X13 = X4 • X7 • X14 • X21 • X37 • X51 • X62. 

(5.5a) 

(5.5b) 

(5.5c) 

(5.5d) 

The next step of determining the axial values and number of centerpoints 

requires special consideration due to the variability of the response estimator 

ZLH(X). As related by Lorenzen and Anderson (1993), where F represents the size 

of the fractional portion (F = 2K'P), 2K the number of axial points, and nK 
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TABLE 5.36 
REGRESSION RESULTS FOR PLACKETT-BURM AN DESIGN IN TA BLE 5.35 

Analysis of Variance 
Source DF Sum of Squares Mean Square R Square 

Model 19 223527868 11764625 1.0 
Error 0 
Total 19 223527868 

Selected Parameter Estimates 
Variable Coded Par. Est. Uncod. Par. Est. 
Intercept 271566 359928 

X2 -654.63 -130.93 

X3 -542.70 -108.54 

X4 -1786.22 -357.24 

X7 -905.39 -181.08 
x10 -714.49 -142.90 

XU -644.85 -128.99 

X12 -665.11 -133.02 
x13 -729.11 -145.82 

X14 -945.78 -189.16 
x15 -496.35 -99.27 

X17 -517.94 -103.53 
x21 -882.77 -176.55 
x37 -850.18 -170.04 
x43 -143.27 -28.65 

X47 -506.37 -101.27 
x48 -528.24 -105.65 
x50                  -315.83 -63.17 
x51                  -727.77 -145.55 
x62 -668.19 -133.64 

the number of centerpoint replications, a CCD design becomes orthogonal by 

selecting the axial coded multiplier oto using the relations 

Q = (^¥ + 2K + nK - JF)2 (5.6a) 

a0 = VC»V4, (5.6b) 

whereas the axial multiplier a/? for a rotatable design is 
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<xÄ = >/F. (5.7) 

Since F and K are fixed, it follows immediately from (5.6) and (5.7) that nK 

should be selected such that Q equals 4 for a design to have both properties. 

Applying this result to the proposed design for 20TERM gives the equivalent 

expression of finding the integer HK such that 

njr«(2+Vl28)-150, (5.8) 

or nK = 27. Plugging nK back into (5.6) gives the final design's orthogonal axial 

multiplier ceo as 3.3555, compared to the rotatable multiplier oc/j = 3.3636. 

The appendix presents the experimental design results using the three 

primary estimators ZRS(x), Zcv(x), and Zbrfx). Table 5.37 on the following 

pages gives the regression results for the most significant parameters, with the 

linear and quadratic terms dominating the polynomial approximation. Table 5.38 

provides the A canonical analysis results. 

Since the Plackett-Burman screening design focuses on those x/'s that 

influence the estimated response ZLH(X) the most, the resulting canonical analysis 

provides an excellent estimate of the maxima ridge. By contrast, while Table 5.38 

does provide a minima ridge assessment, a better estimate of the direction of 

minimum sensitivity can be found by re-accomplishing the preceding steps with a 

screening design composed of those xh that affect the estimated response ZLH(X) 

the least. Therefore, this summary will forgo a minima ridge recommendation, 

and concentrate instead on characterizing the most influential components of x. 
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TABLE 5.37 
REGRESSION RESULTS FOR EXPERIMENTAL DESIGN IN APPENDIX FOR 20TERM* 

Analysis of Variance 
Source DF Sum of Squares Mean Square F-Ratio         R Square 
Model 
Error 
Total 

73 
26 
99 

1288589185 
3612523 

1292201709 

17651907 
138943 

127              .8903 

Selected Parameter Estimates 
Variable Uncod. Par. Est. Std. Error Cod. Par. Est. 
Intercept 685077.00 33499.00 255528.00 

X2 -2917.43 540.06 -43178.00 

X4 -4077.62 1012.075 -4181.95 

X7 -2737.28 540.84 -2048.05 
x10 -3199.12 542.45 -3526.97 
x12 -3140.76 411.21 -4720.38 
x13 -2970.91 410.70 -3568.97 

X14 -2093.84 549.42 -1387.97 
x21 -3235.77 406.38 -5210.70 
X37 -2060.16 810.09 -2774.82 

X51 -2275.19 811.86 -2099.77 
x62 -1157.21 544.96 -1610.20 

x2 • x2 32.41 4.03 20531.00 

X4.x4 65.56 14.18 11814.00 

X7.x7 25.08 4.03 15892.00 
x10.x10 33.60 4.03 21289.00 
x12.x12 23.79 2.27 26791.00 
x12.x21 6.40 3.19 7213.03 
x13.x13 20.62 2.29 23221.00 
x13.x21 7.07 3.19 7959.89 
X14.X14 30.64 4.03 19410.00 
x21 . x21 25.16 2.27 28337.00 
x37.x37 41.43 9.07 11665.00 
x51 . x51 38.39 9.07 10810.00 
x62. x62 17.39 4.03 11016.00 

■ Based on ZLH(
X
) estimator. 
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TABLE 5.38 
A CANONICAL ANALYSIS OF 20TERM 

Eigenvectors 
Eigenvalues X2 X4 X7 x10 x12 x13 

38670 .2619 .1484 .2363 .3093 .4796 .4061 

23945 .0439 .0037 .0255 -.0581 .7836 -.0340 

21508 .2778 .0783 .1317 .2816 -.3619 .6327 

19842 .4229 .0638 .0228 -.4375 -.0031 -.1586 

19503 .1807 .0712 .0365 .7517 -.0358 -.5735 

18848 -.7904 .0873 .0169 .1558 .0804 .1588 

14798 -.1004 .0196 .9207 -.1198 -.1100 -.1939 

12528 .0201 .5770 -.0066 -.1349 -.0025 -.0928 

11136 .0214 -.3849 .0413 .0061 .0253 .0125 

10399 .0717 -.4101 -.1688 .0888 -.0011 -.0485 

9597 -.0065 .5526 -.2146 .0217 -.0672 -.0557 

Eigenvalues X14 x21 x37 x51 x62 

38670 .0061 .5929 .0367 .0864 .0119 

23945 .0282 -.6124 -.0464 .0306 -.0002 

21508 .2054 -.4931 .0533 .0121 .0198 

19842 .7636 .1177 -.0370 .0367 -.0155 

19503 .2207 -.0667 .0123 -.1110 .0091 

18848 .5472 .0456 .0818 .0549 .0177 

14798 -.0846 -.0763 -.0309 .2525 .0035 

12528 -.1023 -.0485 .7625 -.1071 .1845 

11136 .0467 .0250 .0706 -.0692 .9145 

10399 .0252 -.0080 .4598 .7444 -.1468 

9597 -.0728 -.0326 -.4320 .5835 .3270 

Estimated Minima Ridge 
Coded Radius X2 X4 x> x10 x12 x13 Z(x)* 

0.0 25.5 13.5 26.0 27.0 40.5 40.0 255528 

1.0 28.9 21.6 21.4 28.6 41.2 38.6 261453 

Coded Radius X14 x21 x37 x51 x62 Z(x)* 

0.0 31.0 35.5 17.0 17.5 28.5 255528 

1.0 30.6 36.4 18.9 28.2 38.5 261453 

Estimated Maxima Ridge 
Coded Radius X2 X4 X7 x10 x12 x13 Z(x)* 

0.0 25.5 13.5 26.0 27.0 40.5 40.0 255528 

1.0 18.1 10.9 20.2 19.0 24.6 26.7 304841 

Coded Radius X14 x21 x37 x51 x62 Z(x)* 

0.0 31.0 35.5 17.0 17.5 28.5 255528 

1.0 30.1 16.4 15.7 15.8 27.6 304841 

* - Regression estimate. 
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In that context, Table 5.38 shows that reducing x2, x7, x10, x12, x13, and x21 

from their xcp values considerably increases the estimated response ZLH(X). 

Examining the eigenvectors reveals these factors as prominent components in the 

rotated axes with the highest eigenvalues, although in this design every axis 

exhibits significant curvature (again reflecting the screening design's choices). 

Figure 5.7 expresses this phenomenon in graphical terms for easier understanding. 

Unlike the previous problems, 20TERM does not afford the true 

population parameters for comparison to sample-based estimates. Furthermore, 

the current design's emphasis on influential factors suggests little likelihood of 

finding lower maximum values of z* at any location other than xCp. Therefore, 

this analysis presents the tolerance limits for xev and xCp in Table 5.39 and a 

histogram of 400 random samples of zk at xCp in Figure 5.8. Both the tolerance 

limit results and sample distribution suggest 20TERM follows a near-symmetrical 

distribution similar to 4TERM. These results suggest the following analysis 

summary. 

20TERM Analysis Summary. Suggest using xCp as defined in Table 

5.34. Avoid reducing the current values of the decision variables as 

shown in Figure 5.7; however, increases in these figures can occur with 

small gains in Z(x). Tolerance limits suggest near-symmetrical 

distribution with upper limit approximately $50k over expected value. 

Minimal ridge estimation requires further analysis. 
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TABLE 5.39 
TOLERANCE LIMITS FOR 20TERM (RANDOM SEED = 3623643) 

Tolerance Limit 
X£ ZRC(XJO Lower Limit zr Upper Limit zm 

Aev 
XCP 

283596 
258557 

239281 
230766 

339276 
307655 

- -4 

% -6 

«>   -8 

C 

-10 

2 -14 

-16d 

-18 

-20 

JO 

,13 

,12 

..21 

0.0   0.1    0.2   0.3   0.4   0.5   0.6   0.7   0.8    0.9    1.0 
Unit Radius 

Figure 5.7. Maxima Ridge Results for 20TERM 

Finally, although this research uses LH sampling only for the previous 

analysis of 20TERM, applying RS and CV sampling to (1) the centerpoint portion 

of the experimental design and (2) the entire final design in the appendix provides 

ways to measure of the amount of variance reduction using LH sampling. First, 
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P(zj 
40 
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10 

5- 

0 

Sample Median       /^(x) 

226     234     242     250     258     266     274     282     290     298 
(in thousands) 

Figure 5.8. Sample Distribution of z* for Centerpoint (xk) 

using the 27 estimators of the centerpoint in the same fashion as the previous 

problems use 10 estimators of a given Z(\k) gives the results shown in Table 5.40. 

Since the sample variance estimators in Table 5.40 are equivalent to the mean 

square pure error under linear regression, a natural extension of such an analysis 

would compare the regression results using different sampling techniques for the 

entire design. Table 5.41 provides such a comparison (note that both the lack of 

fit and pure error drops when using VRT — especially LHs). 
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TABLE 5.40 
COMPARISON OF ESTIMATOR ACCURACY AND VARIANCE FOR 

RS, CV, AND LH SAMPLING TECHNIQUES FOR 20TERM (7=50, N=21) 

X2 ,x4 X7 A. , xio, X12, x13 

X 
14,x 21 x37 , 

j A   j J i51, ,62 ZRS(XO) Zcv(xo) ZLH(XO) 

0 0 0 0 0 0 0 0 0 0 0 256393.22 255784.72 256009.81 

0 0 0 0 0 0 0 0 0 0 0 255674.83 255718.84 254763.36 

0 0 0 0 0 0 0 0 0 0 0 253818.95 253197.25 255341.89 

0 0 0 0 0 0 0 0 0 0 0 253555.20 253433.41 254785.86 

0 0 0 0 0 0 0 0 0 0 0 252856.48 252810.88 255575.00 

0 0 0 0 0 0 0 0 0 0 0 255490.61 255577.50 255235.52 

0 0 0 0 0 0 0 0 0 0 0 252902.50 254253.78 255041.83 

0 0 0 0 0 0 0 0 0 0 0 253241.92 254443.30 255877.17 

0 0 0 0 0 0 0 0 0 0 0 256394.80 256144.66 255931.16 

0 0 0 0 0 0 0 0 0 0 0 254077.73 253923.22 255685.38 

0 0 0 0 0 0 0 0 0 0 0 254993.14 254751.05 255091.02 

0 0 0 0 0 0 0 0 0 0 0 257465.98 257531.95 255311.55 

0 0 0 0 0 0 0 0 0 0 0 254823.16 255137.92 255446.63 

0 0 0 0 0 0 0 0 0 0 0 255125.48 254839.91 255863.88 

0 0 0 0 0 0 0 0 0 0 0 255648.98 255481.08 255543.17 

0 0 0 0 0 0 0 0 0 0 0 258436.55 257506.67 254989.86 

0 0 0 0 0 0 0 0 0 0 0 257079.67 255383.59 255698.77 

0 0 0 0 0 0 0 0 0 0 0 254280.70 254184.72 254915.28 

0 0 0 0 0 0 0 0 0 0 0 252949.27 252760.42 255062.73 

0 0 0 0 0 0 0 0 0 0 0 260193.55 260242.17 255693.64 

0 0 0 0 0 0 0 0 0 0 0 256091.58 256139.03 255246.78 

0 0 0 0 0 0 0 0 0 0 0 257106.16 254932.30 255796.36 

0 0 0 0 0 0 0 0 0 0 0 254390.89 254333.63 255222.17 

0 0 0 0 0 0 0 0 0 0 0 255581.75 255756.41 255611.36 

0 0 0 0 0 0 0 0 0 0 0 255913.77 256291.66 255996.63 

0 0 0 0 0 0 0 0 0 0 0 257371.08 258470.84 255658.77 

0 0 0 0 0 0 0 0 0 0 0 254371.97 254671.95 255388.92 

ZRS(XO) Zcv(xo) ZLH(XO) 

Estimated Mean Z(XQ) 255415.92 255322.33 255436.46 

Sample Variance s^(xo) 3226848 2883646 138943 

% Variance Reduction — .1064 .9569 
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TABLE 5.41 
REGRESSION RESULTS FOR EXPERIMENTAL DESIGN IN APPENDIX FOR 20TERM 

Residual DF 
Lack of Fit 
Pure Error 

Total Error 

Random Sampling 
Sum of Squares        Mean Square F-Ratio R Square 

73 
26 
99 

1441633317 
83898043 

1525531360 

19748402 
3226848 

15409408 

6.12 .8757 

Residual DF 
Lack of Fit 
Pure Error 

Total Error 

Control Variates 
Sum of Squares        Mean Square F-Ratio R Square 

73 
26 
99 

1426942064 
74974798 

1501916862 

19547152 
2883646 

15170877 

6.78 .8787 

Residual DF 
Latin Hypercube 

Sum of Squares        Mean Square F-Ratio R Square 
Lack of Fit 73 1288589185 17651907 127.00 .8903 
Pure Error 26 3612523 138943 

Total Error 99 1292201709 13052543 
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Chapter 6 

Conclusions 

6.1 INTRODUCTION 

This chapter closes this dissertation by reviewing its research efforts in the 

following format: 

1. Results and Contributions. Surveys the computational requirements and 

empirical results of the proposed techniques for finding x*, deriving a 

polynomial approximation of Z(x) as a function of x, and integrating the 

underlying distributional characteristics in the decision process. Also 

examines this dissertation's contributions — and their significance — to 

the topic of two-stage stochastic linear programming with recourse. 

2. Recommendations for Future Research. Suggests areas of future research 

based on the discoveries of this study. 

3. Conclusions. Summarizes this dissertation's accomplishments. 

Each section follows the same organizational format as the rest of this dissertation 

regarding the topics listed under Optimization Methods and Statistical Analysis. 

Figure 6.1 on the following page provides a summary chart of this chapter for 

quick reference. 
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6.2 RESULTS AND CONTRIBUTIONS 

6.2.1 Optimization Methods 

This dissertation investigated several techniques in two basic categories 

for finding x* as the starting point for conducting response surface analyses — 

search methods (projected gradient, geometric simplex, and PARTAN), and 

optimization algorithms (optimal bases and dual vector sets). Regarding search 

methods, the PROJECTED GRADIENT ALGORITHM clearly outperforms the other two 

algorithms for all problems in terms of computational duration and convergence; 

indeed, neither the GEOMETRIC SIMPLEX or PARTAN ALGORITHMS can handle 

larger problems (20TERM) in any reasonable amount of time. The PROJECTED 

GRADIENT ALGORITHM'S clearest advantage lies in its ability to find an accurate 

directional descent vector; neither the straightforward GEOMETRIC SIMPLEX or 

PARTAN's parallel tangent property gave better directional guidance for the 

computational time either saved or expended, respectively. Furthermore, using 

the quadratic fit of the response along the directional descent for estimating the 

stepsize gives the PROJECTED GRADIENT ALGORITHM the capability to find the 

region of optimality fairly quickly even for the largest problems; only in the 

region of optimality for those cases does it become more tractable to resort to 

predetermined stepsizes. 

As for the OBS-COMPLETE and ODV techniques, such methods provide 

clear computational advantages for smaller recourse problems. The OBS-RESET 

option also proves advantageous over repetitive OSL calls for medium-sized 
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problems, but not the order of magnitude seen with the smaller ones. Ultimately, 

though, this technique is problem-dependent, and for very large problems may not 

be a viable option. 

6.2.2 Statistical Analysis 

The results from the response surface approximation of Z(x) establish the 

viability and usefulness of this form of analysis for two-stage stochastic linear 

programming with recourse. Specifically, the results and contributions of this 

research in this category are summarized below: 

1. Variance Reduction. This dissertation establishes that Latin hypercube 

sampling guarantees a reduction in the variance of the sample estimator of 

Z(x) over random sampling for two-stage capacity expansion problems, 

and empirically confirms such reductions as both large and consistent for 

the set of test problems. Most importantly, this variance reduction 

technique can be applied to any algorithm or analytical technique that 

employs statistical estimation of the objective function for two-stage 

stochastic linear programming problems with recourse. By contrast, 

using the random elements of T and © as control variates generally does 

not reduce the variance nearly as well as the Latin hypercube technique; 

indeed, cases exist where such controls increase the variance of the sample 

estimator. Furthermore, as a practical matter using Latin hypercube 

sampling demands very few additional computations, and — unlike 
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control variates — requires no knowledge or guesses on correlation to the 

response h(x,(0,T). 

2. Experimental Design. This study demonstrates that experimental design 

techniques — such as preliminary factor screening, fractional design, and 

orthogonal, rotatable central composite designs — can be successfully 

applied to this class of problems. 

3. Response Surface Analysis. This research demonstrates the feasibility of 

fitting a second-order polynomial to Z(x) in the region of optimality. 

Although sometimes requiring factor adjustments in range or centerpoints, 

all problems in the test set can be fit with a positive definite quadratic 

form and R2 factor near .9 or better. Most importantly, the canonical 

analysis of these approximations empirically confirms the existence of 

optimal or near-optimal regions, and provides a method of sensitivity 

analysis not available until now. 

4. Tolerance Limits. Finally, this dissertation applies the non-parametric 

technique of tolerance limits to characterize the underlying distribution, 

and to incorporate such results in the decision-making process. Although 

problem-dependent, such analysis found cases in the current problem set 

where either pathologically skewed distributions or reduced tolerance 

ranges for near-optimal solutions suggest expanding the decision criteria 

beyond MIN Z(x). 
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6.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

6.3.1 Optimization Methods 

The disappointing results of the GEOMETRIC SIMPLEX (and to a lesser extent 

PARTAN) ALGORITHMS offer limited possibilities for further research in these 

areas; both their performance and inherent liabilities in the stochastic recourse 

environment suggest little likelihood of improvement. By contrast, the PROJECTED 

GRADIENT ALGORITHM proves itself to be a viable method for finding the optimal 

or near-optimal solution for even the largest problems, and perhaps can be 

improved upon in the following areas: 

1. Stepsize Estimation. This dissertation shows that using a quadratic 

estimate of Z(x) as a function of the projected gradient multiplier very 

quickly finds the region of near-optimality; however, the method does not 

always work, especially as the search nears optimality. Further 

investigations into different approximation methods may increase its 

accuracy. 

2. Adaptive Search Techniques. As implemented, the PROJECTED GRADIENT 

ALGORITHM uses constant parameters for the number of points searched 

along the line segment, their sampling size, and the length of the line 

segment itself. However, this 'one-size-fits-all' approach clearly does not 

work as efficiently in the region of optimality, again particularly for larger 

problems. Consequently, a more dynamic approach whereby the 

algorithm adjusts the search process in order to gain more precise 
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information in the immediate area of the incumbent solution should 

provide better results. 

Regarding optimal basis sets, their use clearly provides computational 

advantages whenever the specific problem makes them available. Unfortunately, 

this research strongly suggests that the OBS-COMPLETE technique will not be 

practical for larger problems. However, this study does not fully explore cases 

where the OBS-RESET method might prove practical for even larger problems. 

These extensions include: 

1. Expanded Reset Option. The current algorithm resets the optimal basis set 

for each feasible x*, regardless of the specifics of the algorithm in use; 

however, another feasible x^+i 'nearby' may share a significant number of 

optimal bases. For instance, the proposed reduced line segment in a 

revised PROJECTED GRADIENT ALGORITHM may require a reasonably small 

number of optimal bases along its entire length; in such a case, the short 

segments of a problem like 20TERM in its region of optimality could be 

estimated more quickly. This same phenomenon might occur in 

experimental design settings as well. Obviously, repetitive sampling of a 

single point (such as the centerpoint) would benefit; however, with the 

reduced number of factors common to fractional designs, a single optimal 

basis set might still be practical. Furthermore, such a case would allow 

replications at all design points (not just the centerpoints), providing even 

better estimates of experimental error. 
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2. Dynamic Reset. Another suggestion would be to 'sort-and-trim' the 

optimal basis set as an integral part of the iterations of any particular 

algorithm. Based on frequency of optimality, as less-used bases 

progressively move to the bottom of the list they would be replaced by 

newer, more frequently used optimal bases in an on-going process. 

6.3.2 Statistical Analysis 

Just as this dissertation's principal contributions lie in applying statistical 

analysis techniques — variance reduction, response surface analysis, and non- 

parametric statistics — to the recourse problem, so do the most interesting 

avenues for further research. Specifically, these include the following 

suggestions: 

1. Variance Reduction. While the Latin hypercube technique substantially 

lowers the variance of the estimators of Z(x), even further variance 

reduction may be possible through its combined use with other VRTs. 

One particularly promising prospect involves using a single control variate 

proposed by Morton (1995b). 

2. Response Surface Analysis. This research employs only basic 

experimental designs and response surface techniques to describe Z(x). 

Additional areas of research include using minimum bias designs, 

experimental design structures other than central composite designs, and 

preliminary factor sampling (Morris 1991).   Furthermore, additional 
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polynomial approximations to responses other than Z(x) may prove useful 

as well. 

3. Distributional Analysis. Additional non-parametric analysis, such as 

quantile, median, and skewness estimates, would further characterize the 

underlying distribution of /i(x,(0,T). As with tolerance limits, such 

information would provide additional insight to the decision-maker. 

6.4 CONCLUSIONS 

Since its introduction 40 years ago, researchers have devoted considerable 

theoretical and empirical research into understanding and solving two-stage 

stochastic linear programming with recourse. During this same period simulation 

— including the related fields of experimental design, variance reduction, and 

response surface methodology — developed into a powerful method of analysis 

for problems inherently stochastic in nature. This dissertation represents a formal 

synthesis of these two fields — an investigation in how to apply the methods of 

one to get answers and insight about the other. In so doing it brings a new 

philosophy to solving an old problem while opening additional avenues of 

research. It accomplishes this from a tactical point-of-view by providing new 

techniques for efficiently and accurately solving the classic optimization problem. 

Most importantly, from a strategic perspective this research introduces the equally 

important topics of sensitivity and distributional analysis by demonstrating their 

viability with respect to this class of stochastic linear programming problems. 
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Appendix 

TABLE A. 1 
EXPERIMENTAL DESIGN FOR 20TERMt 

x2,x4,x7,xlO,xl2)X13 
xl4x21)X37,x51)X62 ZRS(xfc) Zcvto) ZLH(x*) 

1  1  1  1  1-1-1-1-1-1 277197.81 277058.50 276014.53 
1  1-1  1-1  1-1-1 -1 -] .] 275254.03 275498.84 272648.09 

272360.13 272067.63 273361.38 
279219.50 278849.44 277337.97 

1   -1   -1   -1-1    1    1   -1   -1   -' _] 280607.00 280422.78 279328.13 
1    1-1-11-11-1   "I   -] .] 276574.34 275890.34 275684.44 
1-1    1    1-1-1    1-1   "I   -- .] 279598.56 278392.69 277554.34 
1    1    1    1    1    1    1   -1   -1   "' .] 274301.03 275076.59 272743.44 
-1-1-1    1    1    1-1    1   "I .] 270083.28 270175.94 273545.63 
-1    1-1    1   -1   -1   -1    1   "I .] 272570.59 273130.00 275833.47 
-1   -1    1-1    1   -1   "I    1   "I   "■ .] 277644.00 277744.44 275453.75 
-1    1    1-1-1    1-1    1   -1 .] 273914.78 273089.50 272481.97 
1    1    1-1-1-1    1    1   -1   -1 .] 282453.75 282164.84 282576.19 

-1    1-1-1    1    1    11   -1   _ .] 272598.69 272831.00 272052.38 
-1-1    1    1-1111   -1 .] 275134.81 276479.47 274012.63 
-1    1    1    1    l-lll-l- .] 272995.66 272986.84 272015.53 
-1   -1   -1    1   -1    1   -1   -1    1   " -■ 279808.19 279251.34 278463.38 
-1    1-1    1    1-1-1-11 -■ 276978.41 277362.06 274477.59 
-l -l i -l -l -l -l -l l -: -■ 280626.34 281349.03 283072.91 
-111  -1   1   1  -1  -1   1  - -■ 273965.31 273058.50 272286.69 
-1  -1  -1  -1   1-1   1-1   1  - -■ 284488.38 284249.03 281871.84 
-1   1-1-1-1   1   1-1   1 - 276674.31 276447.94 278073.81 
-1-1   1   1   1   1   1-1   1  -' - 274631.94 274242.44 272161.03 
-1111-1-11-11- - 277075.63 276338.91 276190.97 
1-1-1   1  -1  -1-111  - - 273376.38 273977.06 274504.50 
1   1-1   1   1   1-1   1   1  - . 272160.13 272903.66 273301.03 
1-1   1-1  -1   1-1   1   1  - - 269848.13 268495.13 272287.09 
1   1   1-1   1-1-1   1   1  - . 269188.69 267365.28 269757.84 
1-1-1-1   1   1   1   1   1  - - 272380.59 272371.56 270562.81 
1   1-1-1-1-1   1   1   1  - - 274011.84 272677.84 273875.00 
l-iiii-iiii- - 272288.75 273286.66 271861.19 
1   1   1   1-11111- _■ 271703.63 272262.34 273023.16 

-1  -1  -1-1   1   1  -1  -1  -1 -■ [  278668.09 278596.19 277745.78 
_ I  281917.41 282506.78 282057.44 

-1-1111-1  -1  -1  -1   1 . . I  272411.94 272246.94 275982.03 
-i i 1 l-ii-i-i-i . I  271475.09 271670.84 272828.09 
-1 -1 -1 i-1-i l -l -l _ I  282052.63 281011.19 282387.00 
-1 1-1 l l l l-i-i . I  271320.00 270516.91 271322.16 
-1 -1 1-1-1 l l -l -l _ I  276208.63 276268.44 279483.06 
-1 1 1-1 l-ii-i -l _ I  277279.38 278598.91 275363.31 
1 -1 -i -l l-i-i l -l . L  273663.25 273341.53 273864.41 

l l-i-i-i l-i l -l i - I  273276.91 273578.56 270851.00 
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TABLE A. 1- — CONTINUED 

x2,x4,x'J,xw,x L2X13 

X14x21,x37
>X

5 1)X62 ZRS(X*) Zcv(x*) ZLH(x*) 
1            1            1            1-1 1-1            I-! 277663.72 281379.84 277887.09 
1            1-1-1        -1 1-1            1         "I 269996.59 271297.16 270683.16 

-11-111 1-1            1         -] 273338.19 272963.75 271529.03 
-1           1            1-1           1 1-1            1         "I 270203.00 273442.84 270532.38 

1         -1         -1         -1           1 1-1            1         -1 271198.97 270923.31 274892.81 
1-1            1         "I 278212.16 278307.97 275093.44 

-1            1            1         -] 282820.13 282816.97 281126.63 
-1-1           1            1         -1 -1             1             1         -] 267157.88 266390.00 269838.88 

1     1-1     1-1 -1            1            1-1 271664.19 272222.56 271625.06 
1            1            1-1-1 -1             1            1         - 271524.50 271403.19 268896.81 

-1            1            1         "' 273551.25 273914.41 270289.19 
-1           1-1-1           1 -1            1            1         ~ 275612.81 275430.56 274236.25 
1-1           1-1           1 -1            1            1         ~ 270732.84 270923.06 274300.59 
1-1-1     1     1 -1            1            1         " 272924.81 273094.56 271315.56 
1            1            1           1         - 111- 276751.88 275863.72 276010.91 

-1    -1     1    -1    -1 111- 272564.56 272284.56 272252.25 
1            1-1-1        - 111- 274431.34 273284.44 274364.41 
1111- 111- [     277532.47 277129.44 274888.78 

-1           1            1-1 111- [     273819.63 274121.69 272788.19 
-1     1    -1     1 1            1            1         " I     267480.81 267363.72 270872.63 

111" I     272635.06 273049.06 270784.69 
1    -1    -1    -1 111- [     273861.03 274057.19 273490.38 

-1         -1        -1           1 -1         -1         -1 [     280768.50 281276.47 282136.56 
-1        -1           1         -1        - -1         -1         -1 [     276869.47 276409.56 278486.56 

[     280619.06 280726.59 280595.09 
1            1            1            1        - -1         -1         "I I     271124.44 272042.03 271577.72 

-1           1            1-1 -1         -1         -1 [     275369.59 276431.94 278664.19 
-1           1-1           1 -1         -1-1 [     273584.34 273295.66 275431.22 
1-111 -1         -1         -1 I     271785.16 271603.53 275384.75 
1         -1        -1        -1 -1         "I         -1 L     279768.41 279507.44 280090.22 

-1    -1    -1    -1    - 1         -1         -1 I     277305.41 277003.03 278140.50 
-1-1     1     1    - 1         -1         "I I      276261.97 276185.06 270848.19 

1     1-1     1    - 1         "I         -1 I     276775.63 277764.69 273649.69 
1            1            1         -1        - 1         -1         -1 L     274530.00 274086.09 273728.31 

1         -1         -1 I     272895.50 272417.06 273177.44 
-1           1         -1         -1 1         -1         "I I     272288.00 271969.41 271461.47 
1-1           1-1 1         -1         -1 I     273157.72 272729.75 271950.41 
1-1-1           1 1         -1         -1 t     270103.81 270765.25 270262.00 

-1         -1           1         -1        - [         -1            1-1 1     276202.16 277332.16 277291.84 
-1    -1-1     1    - 1          _1             1          -1 I     275069.81 274744.00 273809.66 
1111- [         -1            1-1 1     269949.88 271796.31 271299.13 
1            1         -1         -1        - L    -1     1-1 1     276457.81 276699.44 272069.50 

-1           1-1           1 [    -1     1-1 1     274575.00 274601.72 274165.84 
-1           1            1-1 i    _i     1-1 1      270072.69 271580.91 271040.44 

1    -1    -1    -1 i    _i      i    _i 1     280422.13 280294.19 278913.28 
1-111 I    -1     1-1 1     268220.09 267690.31 269662.53 

-1    -1 -1-1     1     1    - 1     271615.97 271024.00 272807.28 
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TABLE A. 1 — CONTINUED 

X2, X4, X7, X10, X 12*13 
xWx21jX37>x5 1>X62 ZRS(**) Zcv(xfe) ZLH(xfc) 

11-1 275685.03 275554.16 276729.00 
-1-1           1           1           1-1        -1 11-1 268890.28 269699.00 272272.69 
-1           1           1           1-1           1-1 11-1 [     272479.72 272408.91 272452.13 
-1        -1        -1           1-1-1           1 11-1 [     274211.63 273738.31 277067.81 
-11-11111 11-1 L     267583.94 267217.88 270455.41 
-1        -1           1-1-1           1           1 11-1 I     273458.56 272788.25 273689.88 
-1           1           1-1           1-1           ] 11-1 I     271418.94 271980.63 271238.47 
1-1-1           1        -1        "I        "] -1-1       1 I     278552.06 278902.38 278077.56 
1           1-1           1           1           1        "] -1-1      1 I     270402.06 270277.66 269766.91 
1-1           1-1-1           1        "I -1-1       1 L     271874.88 272181.34 275105.56 
1           1           1-1           1        -1        -] -1-1      1 I     270349.00 269449.66 271082.63 
1-1-1-1           1           1           1 -1-1      1 1     274688.63 274838.94 272888.22 
1     1-1-1    -1    -1     3 -1-1      1 I     278903.19 278913.84 277762.34 
1-1     1     1     1-1     ] -1-1       1 [     274149.09 273514.03 272103.28 
1111-111 -1-1       1 I     268679.03 267704.84 270237.09 

-1    -1    -1     1-1     1    -] 1-11 I     275773.53 276179.81 273628.97 
-1     1-1     1     1-1    -] 1-11 I     270014.44 270289.34 270501.03 
-1    -1     1    -1    -1    -1    -] 1-11 [     277562.13 277240.97 277561.00 
-1     1     1-1     1     1    -] 1-11 I     270610.75 272090.84 270555.66 
-1    -1    -1    -1     1-1     ] 1-11 L     281698.16 281097.84 276109.38 
-1     1-1-1-1     1     1 1-11 I     274660.88 273686.75 273048.47 
-1-11111] 1-11 [     275039.22 278370.06 273290.31 
-1     1     1     1-1-1     ] 1-11 [     268650.34 269092.06 271847.94 
-1-1-1     1     1     1    ~. -111 I     272377.22 271524.91 272687.69 
-1     1-1     1    -1    -1    -' -111 I     278669.19 279366.28 276824.19 
-1    -1     1-1     1    -1    -. -111 L     279659.63 279290.28 277272.72 
-1     1     1-1-1     1    -'. -111 I      274125.28 273539.69 273429.53 

-111 I     283753.78 283152.31 283831.47 
-1     1-1-1     1     1     ] -111 I     272916.91 272017.19 271852.59 
-1-1     1     1-1     1     ] -111 I     270736.72 270587.56 274074.19 
-11     1     1     1    -1     ] -1       1       1 I     271719.44 272061.16 271237.88 
1-1-1     1     1-1    -'. I     272845.72 271514.84 269328.56 
1     1-1     1-1     1    -" I     268399.06 267801.91 268868.69 
1-1     1-1     1     1    -' I     269695.34 270385.41 272674.16 
1     1     1-1-1-1    -'. I     268000.31 268926.25 269682.56 
1    -1    -1    -1-1     1     ] I     269832.47 270567.69 272308.13 
1     1-1-1     1-1     ] I     269555.75 269303.91 268693.81 
1-1     1     1-1-1     1 I     267142.34 267987.06 270404.22 

L     280877.28 280925.84 280150.44 
a 
-a 
0 
0 
0 
0 
0 
0 

0 
0 
a 
-a 
0 
0 
0 
0 

0 
0 
0 
0 
a 
-a 
0 
0 

0 
0 
0 
0 
0 
0 
a 
-a 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

262547.16 
280458.16 
260381.20 
268911.56 
263901.41 
273256.19 
266695.69 
279600.22 

262891.19 
281605.63 
262270.34 
268994.94 
266615.88 
272627.66 
265269.19 
279559.66 

262254.28 
280449.28 
257491.28 
267776.72 
262171.47 
271253.25 
262282.09 
281936.09 
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TABLE A.l — CONTINUED 

X 2X4 X7 x10 x12 ,x13 

X 14 x21 x37, X51, x62 ZRS(Xjfc) Zcv(x*) ZLH(Xä) 

0 0 0 0 a 0 0 0 0 0 0 262767.47 262977.56 266524.84 

0 0 0 0 -a 0 0 0 0 0 0 289449.34 289624.91 288697.25 

0 0 0 0 0 a 0 0 0 0 0 265740.59 264797.31 267964.00 

0 0 0 0 0 -a 0 0 0 0 0 277653.84 278618.81 280118.75 

0 0 0 0 0 0 a 0 0 0 0 264566.13 265778.88 261836.02 

0 0 0 0 0 0 -a 0 0 0 0 281942.59 281789.44 278625.28 

0 0 0 0 0 0 0 a 0 0 0 267259.78 267273.06 265554.47 

0 0 0 0 0 0 0 -a 0 0 0 293418.78 293111.38 292761.38 

0 0 0 0 0 0 0 0 a 0 0 254724.94 254350.55 254842.89 

0 0 0 0 0 0 0 0 -a 0 0 267867.94 268843.72 270128.69 

0 0 0 0 0 0 0 0 0 a 0 259339.08 259064.28 256909.66 

0 0 0 0 0 0 0 0 0 -a 0 264690.44 264783.06 266351.53 

0 0 0 0 0 0 0 0 0 0 a 256759.03 256634.92 257119.61 

0 0 0 0 0 0 0 0 0 0 -a 263405.75 264139.34 266553.50 

0 0 0 0 0 0 0 0 0 0 0 256393.22 255784.72 256009.81 

0 0 0 0 0 0 0 0 0 0 0 255674.83 255718.84 254763.36 

0 0 0 0 0 0 0 0 0 0 0 253818.95 253197.25 255341.89 

0 0 0 0 0 0 0 0 0 0 0 253555.20 253433.41 254785.86 

0 0 0 0 0 0 0 0 0 0 0 252856.48 252810.88 255575.00 

0 0 0 0 0 0 0 0 0 0 0 255490.61 255577.50 255235.52 

0 0 0 0 0 0 0 0 0 0 0 252902.50 254253.78 255041.83 

0 0 0 0 0 0 0 0 0 0 0 253241.92 254443.30 255877.17 

0 0 0 0 0 0 0 0 0 0 0 256394.80 256144.66 255931.16 

0 0 0 0 0 0 0 0 0 0 0 254077.73 253923.22 255685.38 

0 0 0 0 0 0 0 0 0 0 0 254993.14 254751.05 255091.02 

0 0 0 0 0 0 0 0 0 0 0 257465.98 257531.95 255311.55 

0 0 0 0 0 0 0 0 0 0 0 254823.16 255137.92 255446.63 

0 0 0 0 0 0 0 0 0 0 0 255125.48 254839.91 255863.88 

0 0 0 0 0 0 0 0 0 0 0 255648.98 255481.08 255543.17 

0 0 0 0 0 0 0 0 0 0 0 258436.55 257506.67 254989.86 

0 0 0 0 0 0 0 0 0 0 0 257079.67 255383.59 255698.77 

0 0 0 0 0 0 0 0 0 0 0 254280.70 254184.72 254915.28 

0 0 0 0 0 0 0 0 0 0 0 252949.27 252760.42 255062.73 
0 0 0 0 0 0 0 0 0 0 0 260193.55 260242.17 255693.64 

0 0 0 0 0 0 0 0 0 0 0 256091.58 256139.03 255246.78 

0 0 0 0 0 0 0 0 0 0 0 257106.16 254932.30 255796.36 

0 0 0 0 0 0 0 0 0 0 0 254390.89 254333.63 255222.17 

0 0 0 0 0 0 0 0 0 0 0 255581.75 255756.41 255611.36 

0 0 0 0 0 0 0 0 0 0 0 255913.77 256291.66 255996.63 

0 0 0 0 0 0 0 0 0 0 0 257371.08 258470.84 255658.77 

0 0 0 0 0 0 0 0 0 0 0 254371.97 254671.95 255388.92 
2 v7 Y10 Y14 t - '0' codes represent centerpoint values from Table 5.34. Half-ranges are 7.5 for x2, x', xlu, x 

and x62; 10 for x12, x13, and x21; and, 5 for x4, x37, and x51. All +a values are ±3.3555. 
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